An insight of enhanced field emission from vertically oriented LaxNd1-xB6 nanorods
Tài liệu tham khảo
Hasan, 2015, Low temperature synthesis of low thermionic work function (LaxBa1-x)B6, J. Alloys Compd., 636, 67, 10.1016/j.jallcom.2015.02.105
Jha, 2013, Vertically aligned nanorods of lanthanum hexaboride with efficient field emission properties, Solid State Commun., 153, 35, 10.1016/j.ssc.2012.10.007
Futamoto, 1980, Thermionic emission properties of hexaborides, Surf. Sci., 100, 470, 10.1016/0039-6028(80)90416-1
Yadav, 2020, A new process for the stabilization of vertically aligned GdB6 nanorods and their field emission properties, CrystEngComm, 22, 5473, 10.1039/D0CE00591F
Petrashov, 1998, Phase-periodic proximity-effect compensation in symmetric normal/superconducting mesoscopic structures, Phys. Rev. B, 58, 15088, 10.1103/PhysRevB.58.15088
Narasimha, 2016, Ultralow effective work function surfaces using diamondoid monolayers, Nat. Nanotechnol., 11, 267, 10.1038/nnano.2015.277
Kim, 2017, Super low work function of alkali-metal-adsorbed transition metal dichalcogenides, J. Phys. Condens. Matter, 29, 315702, 10.1088/1361-648X/aa79bd
Zhang, 2009, Fabrication of large-scale single-crystalline PrB6 nanorods and their temperature-dependent electron field emission, Adv. Funct. Mater., 19, 742, 10.1002/adfm.200801248
Xu, 2013, Excellent field-emission performances of neodymium hexaboride (NdB6) nanoneedles with Ultra-Low work functions, Adv. Funct. Mater., 23, 5038, 10.1002/adfm201301980
Zhang, 2005, Single-crystalline GdB6 nanowire field emitters, J. Am. Chem. Soc., 127, 13120, 10.1021/ja054251p
Maiti, 2019, Optical band gap, local work function and field emission properties of MBE grown β-MoO3 nanoribbons, Appl. Surf. Sci., 476, 691, 10.1016/j.apsusc.2019.01.124
Jadhav, 2017, Pulsed laser deposition of tin oxide thin films for field emission studies, Appl. Surf. Sci., 419, 764, 10.1016/j.apsusc.2017.05.020
Anisimov, 2012, Hall effect study in antiferromagnets RB6 (R-Pr, Nd), Solid State Sci., 14, 1601, 10.1016/j.solidstatesciences.2012.03.006
Pol, 2011, Dry autoclaving for the nanofabrication of sulfides, selenides, borides, phosphides, nitrides, carbides, and oxides, Adv. Mater., 23, 1179, 10.1002/adma.201001210
Petrosyan, 2011, Hexaborides of rare earths as a sensor material for thermoelectric single-photon detectors, J. Contemp. Phys., 46, 125, 10.3103/S1068337211030078
Yadav, 2020, Excellent field emission from ultrafine vertically aligned nanorods of NdB6 on silicon substrate, Appl. Surf. Sci., 526, 146652, 10.1016/j.apsusc.2020.146652
Akopov, 2017, Rediscovering the crystal chemistry of borides, Adv. Mater., 29, 1604506, 10.1002/adma.201604506
Chen, 2004, Structural refinement and thermal expansion of hexaborides, J. Alloys Compd., 366, 2003, 10.1016/S0925-8388(03)00735-7
Selvan, 2008, Single step, low-temperature synthesis of submicron-sized rare earth hexaborides, J. Phys. Chem. C, 112, 1795, 10.1021/jp0765502
Ji, 2011, Rare-earth hexaborides nanostructures: recent advances in materials, characterization and investigations of physical properties, Prog. Solid State Chem., 39, 51, 10.1016/j.progsolidstchem.2011.04.001
Zhang, 2005, Single-Crystalline GdB6 nanowire field emitters, J. Am. Chem. Soc., 127, 13120, 10.1021/ja054251p
Zhong, 1998, Selective area laser-induced deposition of rare earth hexaborides from solution, Mater. Lett., 37, 320, 10.1016/S0167-577X(98)00113-X
Zhang, 2010, Mg-assisted autoclave synthesis of RB 6 (R = Sm, Eu, Gd, and Tb) submicron cubes and SmB6 submicron rods, Eur. J. Inorg. Chem., 2010, 1289, 10.1002/ejic.200901015
Schmidt, 1978, Low work function electron emitter hexaborides, J. Vac. Sci. Technol., 15, 1809, 10.1116/1.569847
Yuan, 2015, Distribution of boundary planes in a (La0.67Nd0.33)B6 polycrystalline bulk prepared by spark plasma sintering, CrystEngComm, 17, 4210, 10.1039/C4CE02389G
Li, 2015, Single-crystalline LaxNd1-xB6 nanowires: synthesis, characterization and field emission performance, J. Mater. Chem. C., 3, 7476, 10.1039/C5TC00804B
Ginting, 2017, Preparation and characterization of zinc oxide doped with ferrite and chromium, AIP Conf. Proc., 1862, 10.1063/1.4991166
Fowler, 1928, Electron emission in intense electric fields, Proc. Roy. Soc. A Math. Phys. Eng. Sci., 119, 173