An inhomogeneous nonlocal diffusion problem with unbounded steps

Journal of Evolution Equations - Tập 16 - Trang 209-232 - 2015
Carmen Cortázar1, Manuel Elgueta1, Jorge García-Melián2,3, Salomé Martínez4,5
1Departamento de Matemáticas, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile
2Departamento de Análisis Matemático, Universidad de La Laguna, La Laguna, Spain
3Instituto Universitario de Estudios Avanzados, (IUdEA) en Física Atómica, Molecular y Fotónica, Universidad de La Laguna, La Laguna, Spain
4Departamento de Ingeniería Matemática Universidad de Chile, Santiago, Chile
5Centro de Modelamiento Matemático, UMI 2807 CNRS-UChile, Universidad de Chile, Santiago, Chile

Tóm tắt

We consider the following nonlocal equation $$\int J\left(\frac{x-y}{g(y)} \right) \frac{u(y)}{g(y)} dy -u(x)=0\qquad x\in \mathbb{R},$$ where J is an even, compactly supported, Hölder continuous kernel with unit integral and g is a continuous positive function. Our main concern will be with unbounded functions g, contrary to previous works. More precisely, we study the influence of the growth of g at infinity on the integrability of positive solutions of this equation, therefore determining the asymptotic behavior as $${t\to +\infty}$$ of the solutions to the associated evolution problem in terms of the growth of g.

Tài liệu tham khảo

Bates P., Chen X., A. Chmaj: Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions. Calc. Var. 24, 261–281 (2005) Bates P., Fife P., Ren X., Wang X.: Traveling waves in a convolution model for phase transitions. Arch. Rat. Mech. Anal. 138, 105–136 (1997) Carr J., Chmaj A.: Uniqueness of traveling waves for nonlocal monostable equations. Proc. Amer. Math. Soc. 132, 2433–2439 (2004) Chasseigne E., Chaves M., Rossi J.D.: Asymptotic behavior for nonlocal diffusion equations. J. Math. Pures Appl. 86, 271–291 (2006) Chen X.: Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Diff. Eqns. 2, 125–160 (1997) Chmaj A., Ren X.: Homoclinic solutions of an integral equation: existence and stability. J. Diff. Eqns. 155, 17–43 (1999) A. Chmaj, X. Ren, The nonlocal bistable equation: stationary solutions on a bounded interval, Electronic J. Diff. Eqns. 2002 (2002), no. 2, 1–12. Cortázar C., Coville J., Elgueta M., Martínez S.: A non local inhomogeneous dispersal process. J. Diff. Eqns. 241, 332–358 (2007) C. Cortázar, M. Elgueta, J. García-Melián, S. Martínez, Existence and asymptotic behavior of solutions to some inhomogeneous nonlocal diffusion problems. SIAM J. Math. Anal. 41 (2009), no. 5, 2136–2164. C. Cortázar, M. Elgueta, J. García-Melián, S. Martínez, Stationary sign changing solutions for an inhomogeneous nonlocal problem. Indiana Univ. Math. J. 60 (2011), no. 1, 209–232. Cortázar C., Elgueta M., García-Melián J., Martínez S.: Finite mass solutions for a nonlocal inhomogeneous dispersal equation. Discrete Cont. Dyn. Syst. 35, 1409–1419 (2015) C. Cortázar, M. Elgueta, S. Martínez, J. Rossi. Random walks and the porous medium equation. Rev. Un. Mat. Argentina 50 (2009), no. 2, 149–155. Cortázar C., Elgueta M., Rossi J.D., Wolanski N.: Boundary fluxes for nonlocal diffusion. J. Diff. Eqns. 234, 360–390 (2007) J. Coville. On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators. J. Differential Equations 249 (2010), no. 11, 2921–2953. J. Coville, Harnack type inequality for positive solution of some integral equation. Ann. Mat. Pura Appl. (4) 191 (2012), no. 3, 503–528. J. Coville, J. Dávila and S. Martínez. Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity. SIAM J. Math. Anal. 39 (2008), no. 5, 1693–1709. J. Coville, J. Dávila and S. Martínez. Pulsating fronts for nonlocal dispersion and KPP nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), no. 2, 179–223. Coville J., Dupaigne L.: Propagation speed of travelling fronts in nonlocal reaction diffusion equations. Nonl. Anal. 60, 797–819 (2005) Coville J., Dupaigne L.: On a nonlocal equation arising in population dynamics. Proc. Roy. Soc. Edinburgh 137, 1–29 (2007) E. B. Davies, “Linear Operators and their Spectra”. Cambridge studies in advanced mathematics 106, Cambridge University Press, Cambridge, 2007. P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in “Trends in nonlinear analysis”, pp. 153–191, Springer-Verlag, Berlin, 2003. Hutson V., Martínez S., Mischaikow K., Vickers G. T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003) Ignat L. I., Rossi J. D.: Refined asymptotic expansions for nonlocal evolution equations. J. Evol. Eqns. 8, 617–629 (2008) M. G. Krein, R. Rutman, Linear operators leaving invariant a cone in a Banach space. Amer. Math. Soc. Translation 1950 (1950) no. 26, 128 pp. L. Kong and W. Shen. Positive stationary solutions and spreading speeds of KPP equations in locally spatially inhomogeneous media. Methods Appl. Anal. 18 (2011), no. 4, 427–456. W. T. Li, J. W. Sun, and F. Y. Yang, Approximate the Fokker-Planck equation by a class of nonlocal dispersal problems. Nonlinear Anal. 74 (2011), no. 11, 3501–3509. Schumacher K.: Travelling-front solutions for integro-differential equations I. J. Reine Angew. Math. 316, 54–70 (1980) W. Shen and A. Zhang. Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differential Equations 249 (2010), no. 4, 747–795. W. Shen and A. Zhang. Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats. Proc. Amer. Math. Soc. 140 (2012), no. 5, 1681–1696. Zhang L.: Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neural networks. J. Diff. Eqns. 197, 162–196 (2004)