Một phương pháp tinh vi để ước lượng giá cây trồng tương lai nhấn mạnh mô hình học máy và học sâu

International Journal of Information Technology - Tập 15 - Trang 4291-4313 - 2023
Saikat Banerjee1, Abhoy Chand Mondal2
1The Department of Computer Applications, Vivekananda Mahavidyalaya, Hooghly, India
2The Department of Computer Science, The University of Burdwan, Burdwan, India

Tóm tắt

Dự đoán giá cho các loại cây trồng tưới nhỏ giọt, chẳng hạn như rau quả, có ý nghĩa quan trọng đối với nông dân, thương nhân và người tiêu dùng. Một dự đoán giá hợp lý và chính xác cho phép nông dân đưa ra quyết định sáng suốt về việc chọn lựa những thị trường gần đó để bán sản phẩm của họ, tối đa hóa cơ hội đạt được giá cả thuận lợi. Nông dân có thể sử dụng thông tin được cung cấp để đưa ra quyết định sáng suốt về thời điểm tối ưu cho các chiến lược tiếp thị của họ. Nhiều mô hình thống kê đã được sử dụng trong quá khứ để dự đoán giá các mặt hàng nông sản. Tuy nhiên, việc thừa nhận rằng các mô hình này bị ràng buộc bởi một số giới hạn liên quan đến các giả định cơ bản của chúng là rất quan trọng. Chúng tôi đã áp dụng mô hình hồi quy, một kỹ thuật phân loại học máy, và bộ nhớ dài-ngắn hạn, một kỹ thuật học sâu để dự đoán giá cây trồng. Các tham số để dự đoán giá bao gồm loại cây trồng, giá trị dinh dưỡng, giá hỗ trợ tối thiểu, giống cây trồng và vị trí. Nghiên cứu này đề xuất và thực hiện một cơ chế để dự đoán giá cây trồng từ dữ liệu lịch sử. Các biến đầu vào được chọn được sử dụng để phát triển các mô hình hồi quy và bộ nhớ dài-ngắn hạn. Hiệu suất của các mô hình này được đánh giá bằng các chỉ tiêu đánh giá chuẩn, bao gồm Lỗi bình phương trung bình, Lỗi bình phương căn và Lỗi phần trăm tuyệt đối trung bình. Dựa trên các kết quả thí nghiệm, rõ ràng rằng mô hình bộ nhớ dài-ngắn hạn thể hiện mức độ khớp tốt đáng kể và thể hiện độ chính xác cao trong việc dự đoán kết quả, vượt qua các mô hình khác và nghiên cứu trước đây.

Từ khóa

#dự đoán giá #cây trồng #học máy #học sâu #mô hình hồi quy #bộ nhớ dài-ngắn hạn #dữ liệu lịch sử #nông sản

Tài liệu tham khảo

Kumar J, Goomer R, Singh AK (2018) Long short term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters. Procedia Comput Sci 125:676–682. https://doi.org/10.1016/j.procs.2017.12.087 Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability 13(3):1318. https://doi.org/10.3390/su13031318 Dash R, Dash PK (2016) A hybrid stock trading framework integrating technical analysis with machine learning techniques. J Financ Data Sci 2:42–57. https://doi.org/10.1016/j.jfds.2016.03.002 Kumar S, Upadhyay S (2019) Impact of climate change on agricultural productivity and food security in India: a State level analysis. Indian J Agric Res. https://doi.org/10.18805/A-5134 Chaudhary S, Suri PK (2021) Framework for agricultural e-trading platform adoption using neural networks. Int J Inf Tecnol 13:501–510. https://doi.org/10.1007/s41870-020-00603-9 Mondal A, Banerjee S (2021) Effective crop prediction using deep learning. In: 2021 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON). IEEE, pp 1–6 Chaurasia RK, Jaiswal UC (2023) Spatio-temporal based video anomaly detection using deep neural networks. Int J Inf Tecnol 15:1569–1581. https://doi.org/10.1007/s41870-023-01193-y Singh B, Jaiswal R (2023) TConvRec: temporal convolutional-recurrent fusion model with additional pattern learning. Int J Inf Tecnol 15:17–27. https://doi.org/10.1007/s41870-022-01116-3 Chhajer P, Shah M, Kshirsagar A (2022) The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decis Anal J 2:100015. https://doi.org/10.1016/j.dajour.2021.100015. (ISSN 2772-6622) Shen J, Shafiq MO (2020) Short-term stock market price trend prediction using a comprehensive deep learning system. J Big Data 7:66. https://doi.org/10.1186/s40537-020-00333-6 Wu JMT, Li Z, Herencsar N et al (2023) A graph-based CNN-LSTM stock price prediction algorithm with leading indicators. Multimed Syst 29:1751–1770. https://doi.org/10.1007/s00530-021-00758-w Vikram R, Divij R, Hishore N, Naveen G, Rudhramoorthy D (2022) Crop price prediction using machine learning naive Bayes algorithms. In: Karuppusamy P, García Márquez FP, Nguyen TN (eds) Ubiquitous intelligent systems. ICUIS 2021. Smart innovation, systems and technologies, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-19-2541-2_3 Padhy R, Dash S, Khandual A et al (2023) Image classification in artificial neural network using fractal dimension. Int J Inf Tecnol. https://doi.org/10.1007/s41870-023-01318-3 Shanthini PM, Parthasarathy S, Venkatesan P et al (2023) HRSR-SVM: hybrid reptile search remora-based support vector machine for forecasting stock price movement. Int J Inf Tecnol. https://doi.org/10.1007/s41870-023-01331-6 Shahvaroughi Farahani M, Razavi Hajiagha SH (2021) Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models. Soft Comput 25:8483–8513. https://doi.org/10.1007/s00500-021-05775-5 Hiransha M, Gopalakrishnan EA, Menon VK, Soman KP (2018) NSE stock market prediction using deep-learning models. Procedia Comput Sci 132:1351–1362. https://doi.org/10.1016/j.procs.2018.05.050 Kumar KD, Haider MT (2019) Blended computation of machine learning with the recurrent neural network for intra-day stock market movement prediction using a multi-level classifier. Int J Comput Appl 43:733–749. https://doi.org/10.1080/1206212X.2019.1593614 Bini BS, Mathew T (2016) Clustering and regression techniques for stock prediction. Procedia Technol 24:1248–1255. https://doi.org/10.1016/j.protcy.2016.05.104. (ISSN 2212-0173) Almaafi A, Bajaba S, Alnori F (2023) Stock price prediction using ARIMA versus XGBoost models: the case of the largest telecommunication company in the Middle East. Int J Inf Tecnol 15:1813–1818. https://doi.org/10.1007/s41870-023-01260-4 Chen K, Zhou Y, Dai F (2015) A lstm-based method for stock returns prediction: a case study of China stock market, in Big Data (Big Data). In: IEEE International Conference on, pp 2823–2824 Wang Y, Liu Y, Wang M, Liu R (2018) LSTM Model Optimization on Stock Price forecasting. In: 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), pp 173–177 Hussein AS, Hamed IM, Tolba MF (2015) An efficient system for stock market prediction. In: Filev D et al. (ed) Intelligent Systems’2014. Advances in Intelligent Systems and Computing, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-319-11310-4_76 Martínez F, Charte F, Frías MP, Martínez-Rodríguez AM (2021) Strategies for time series forecasting with generalized regression neural networks. Neurocomputing 491:509–521 Hu Z, Zhu J, Tse K (2013) Stocks market prediction using support vector machine. In: 2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering, 2, pp 115–118. https://doi.org/10.1109/ICIII.2013.6703096 Sandhya P, Bandi R, Himabindu DD (2022) Stock price prediction using recurrent neural network and LSTM. In: 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), pp 1723–1728. https://doi.org/10.1109/ICCMC53470.2022.9753764 Moghar A, Hamiche M (2020) Stock market prediction using LSTM recurrent neural network. Procedia Comput Sci 170:1168–1173. https://doi.org/10.1016/j.procs.2020.03.049 Naeini MP, Taremian HR, Hashemi HB (2010) Stock market value prediction using neural networks. In: 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), pp 132–136 Sheth D, Shah M (2023) Predicting stock market using machine learning: best and accurate way to know future stock prices. Int J Syst Assur Eng Manag 14:1–18. https://doi.org/10.1007/s13198-022-01811-1 Cerqueti R, Maggi M, Riccioni J (2022) Statistical methods for decision support systems in finance: how Benford’s law predicts financial risk. Ann Oper Res. https://doi.org/10.1007/s10479-022-04742-z Mehtab S, Sen J, Dutta A (2021) Stock price prediction using machine learning and LSTM-based deep learning models. In: Thampi SM, Piramuthu S, Li KC, Berretti S, Wozniak M, Singh D (eds) Machine learning and metaheuristics algorithms, and applications. SoMMA 2020. Communications in Computer and Information Science, vol 1366. Springer, Singapore. https://doi.org/10.1007/978-981-16-0419-5_8 Dhanapal R, AjanRaj A, Balavinayagapragathish S, Balaji J (2021) Crop price prediction using supervised machine learning algorithms. J Phys: Conf Ser 1916:012042. https://doi.org/10.1088/1742-6596/1916/1/012042 Mittal S, Chauhan A (2021) A RNN-LSTM-based predictive modelling framework for stock market prediction using technical indicators. Int J Rough Sets Data Anal. 7(1):1–13. https://doi.org/10.4018/IJRSDA.288521 de Fortuny EJ, De Smedt T, Martens D, Daelemans W (2014) Evaluating and understanding text-based stock price prediction models. Inform Process Manag 50(2):426–441. https://doi.org/10.1016/j.ipm.2013.12.002. (ISSN 0306-4573) Thamarai M, Malarvizhi SP (2020) House price prediction modeling using machine learning. Int J Inform Eng Electron Bus (IJIEEB) 12(2):15–20. https://doi.org/10.5815/ijieeb.2020.02.03 Truong Q, Nguyen M, Dang H, Mei B (2020) Housing price prediction via improved machine learning techniques. Procedia Comput Sci 174:433–442. https://doi.org/10.1016/j.procs.2020.06.111 Mehtab S, Sen J (2020) Stock price prediction using convolutional neural networks on a multivariate time series. Mech Eng eJ. https://doi.org/10.36227/techrxiv.15088734.v1 Sharma K, Bhalla R (2022) Stock market prediction techniques: a review paper. In: Luhach AK, Poonia RC, Gao XZ, Singh Jat D (eds) Second International Conference on Sustainable Technologies for Computational Intelligence. Advances in Intelligent Systems and Computing, vol 1235. Springer, Singapore. https://doi.org/10.1007/978-981-16-4641-6_15 Adetunji AB, Akande ON, Ajala FA, Oyewo O, Akande YF, Oluwadara G (2022) House price prediction using GBM machine learning technique. Procedia Comput Sci 199:806–813. https://doi.org/10.1016/j.procs.2022.01.100 Paul RK, Yeasin M, Kumar P et al (2022) Machine learning techniques for forecasting agricultural prices: a case of brinjal in odisha, India. PLoS ONE 17(7):e0270553. https://doi.org/10.1371/journal.pone.0270553. (Published 2022 Jul 6) Kumari P, Goswami V, Harshith N, Pundir RS (2023) Recurrent neural network architecture for forecasting banana prices in Gujarat, India. PLoS ONE 18(6):e0275702. https://doi.org/10.1371/journal.pone.0275702. (Published 2023 Jun 15) Purohit SK, Panigrahi S, Sethy PK, Behera SK (2021) Time series forecasting of price of agricultural products using hybrid methods. Appl Artif Intell 35(15):1388–1406. https://doi.org/10.1080/08839514.2021.1981659 Bhandari HN, Rimal B, Pokhrel NR, Rimal R, Dahal KR, Khatri RKC (2022) Predicting stock market index using LSTM. Mach Learn Appl 9:100320. https://doi.org/10.1016/j.mlwa.2022.100320 Press Information Bureau, India (2022) From Online Available: https://pib.gov.in/ Department of Agriculture & farmers, Govt. of India (2022) from https://agricoop.nic.in. Indian Agricultural Statistics Research Institute. (2022). From https://iasri.icar.gov.in/ Kisaan Helpline Assists Portal (2022) from https://www.kisaanhelpline.com Directorate of Economics & Statistics. Ministry of Agriculture, Government of India (2022) From https://eands.dacnet.nic.in/publications.html iomartbeta (2022) From https://www.jiomart.com/c/groceries/fruits-vegetables/fresh-vegetables Indiamart (2022) from https://dir.indiamart.com/impcat/fresh-vegetables.html Government of India, Ministry of Agriculture & Farmers Welfare Department of Agriculture, Cooperation & Farmers Welfare Directorate of Economics & Statistics, Pocket Book of AGRICULTURAL STATISTICS (2017) from https://agricoop.nic.in/sites/default/files/pocketbook_0.pdf Kibria BMG, Lukman AF (2020) A new ridge-type estimator for the linear regression model: simulations and applications. Scientifica 2020:9758378. https://doi.org/10.1155/2020/9758378 Hajirahimi Z, Khashei M, Hamadani AZ (2023) Principal component-based hybrid model for time series forecasting. Int J Inf Tecnol. https://doi.org/10.1007/s41870-023-01343-2 Herrera JM, Häner LL, Holzkämper A, Pellet DM (2018) Evaluation of ridge regression for country-wide prediction of genotype-specific grain yields of wheat. Agric For Meteorol 252:1–9. https://doi.org/10.1016/j.agrformet.2017.12.263 Kara Y, Boyacioglu MA, Baykan ÖK (2011) Predicting direction of stock price index movement using artificial neural networks and support vector machines: the sample of the Istanbul Stock Exchange. Expert Syst Appl 38:5311–5319. https://doi.org/10.1016/j.eswa.2010.10.027 Malthouse EC (1999) Ridge regression and direct marketing scoring models. J Interact Mark 13(4):10–23. https://doi.org/10.1002/(SICI)1520-6653(199923)13:4%3c10::AID-DIR2%3e3.0.CO;2-3. (ISSN 1094-9968) Lin CT, Wang YK, Huang PL et al (2022) Spatial-temporal attention-based convolutional network with text and numerical information for stock price prediction. Neural Comput Appl 34:14387–14395. https://doi.org/10.1007/s00521-022-07234-0