An inertial method for solving split common fixed point problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal. 9, 3–11 (2001)
Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)
Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions. Euro. J. Comput. Optim. 4, 3–25 (2016)
Bot, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)
Bot, R.I., Csetnek, E.R.: An inertial forward–backward–forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 71, 519–540 (2016)
Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)
Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29–49 (2016)
Bot, R.I., Csetnek, E.R.: A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 36, 951–963 (2015)
Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)
Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)
Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 18, 103–120 (2004)
Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)
Cegielski, A.: General method for solving the split common fixed point problem. J. Optim. Theory Appl. 165, 385–404 (2015)
Cegielski, A., Al-Musallam, F.: Strong convergence of a hybrid steepest descent method for the split common fixed point problem. Optimization 65, 1463–1476 (2016)
Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projection in a product space. Numer. Algorithms 8, 221–239 (1994)
Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)
Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)
Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)
Chen, C., Ma, S., Yang, J.: A general inertial proximal point algorithm for mixed variational inequality problem. SIAM J. Optim. 25, 2120–2142 (2015)
Dang, Y., Gao, Y.: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem. Inverse Probl. 27, 015007 (2011)
Dang, Y., Sun, J., Xu, H.: Inertial accelerated algorithms for solving a split feasibility problem. J. Ind. Manag. Optim. 13, 1383–1394 (2017)
Eslamian, M., Eslamian, P.: Strong convergence of a split common fixed point problem. Numer. Funct. Anal. Optim. 37, 1248–1266 (2016)
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)
Kraikaew, R., Saejung, S.: On split common fixed point problems. J. Math. Anal. Appl. 415, 513–524 (2014)
Maingé, P.E.: Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 34, 876–887 (2008)
Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 15, 67–79 (2007)
Maingé, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)
Maingé, P.E., Moudafi, A.: Convergence of new inertial proximal methods for DC programming. SIAM J. Optim. 19, 397–413 (2008)
Maingé, P.E.: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Comput. Math. Appl. 59, 74–79 (2010)
Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)
Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)
Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Probl. 26, 055007 (2010)
Moudafi, A., Elisabeth, E.: An approximate inertial proximal method using enlargement of a maximal monotone operator. Int. J. Pure Appl. Math. 5, 283–299 (2003)
Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)
Polyak, B.T.: Some methods of speeding up the convergence of iterarive methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)
Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Shehu, Y.: New convergence theorems for split common fixed point problems in Hilbert spaces. J. Nonlinear Convex Anal. 16, 167–181 (2015)
Shehu, Y., Cholamjiak, P.: Another look at the split common fixed point problem for demicontractive operators. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 110, 201–218 (2016)
Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and its Applications. Yokohama Publishers Inc., Yokohama (2000)
Tang, Y.C., Liu, L.W.: Several iterative algorithms for solving the split common fixed point problem of directed operators with applications. Optimization 65, 53–65 (2016)
Thong, D.V.: Viscosity approximation methods for solving fixed point problems and split common fixed point problems. J. Fixed Point Theory Appl. 19, 1481–1499 (2017)
Thong, D.V., Hieu, D.V.: An inertial subgradient extragradient method for variational inequality problems. Optimization (2017) (Revised)
Wang, F., Xu, H.K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)
Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)
Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)