An in situ defect engineering approach for light-driven methane dry reforming over atomically distributed nickel

Cell Reports Physical Science - Tập 3 - Trang 101127 - 2022
Qiang Li1,2,3, Yanxia Gao1,2,3, Jing Chen4,5,3, Hongpeng Jia1,2,3
1Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
2CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
3University of Chinese Academy of Sciences, Beijing, 100049, China
4Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
5Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China

Tài liệu tham khảo

Singh, 2020, Emerging trends in porous materials for CO2 capture and conversion, Chem. Soc. Rev., 49, 4360, 10.1039/D0CS00075B Yang, 2022, Light-induced redox looping of a rhodium/CexWO3 photocatalyst for highly active and robust dry reforming of methane, Angew. Chem. Int. Ed. Engl., 61, e202200567, 10.1002/anie.202200567 Pakhare, 2014, A review of dry (CO2) reforming of methane over noble metal catalysts, Chem. Soc. Rev., 43, 7813, 10.1039/C3CS60395D Xiao, 2019, Metal-organic frameworks for photocatalysis and photothermal catalysis, Acc. Chem. Res., 52, 356, 10.1021/acs.accounts.8b00521 Wang, 2020, Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects, Angew. Chem. Int. Ed. Engl., 59, 8016, 10.1002/anie.201907443 Chen, 2021, Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity, Joule, 5, 3235, 10.1016/j.joule.2021.11.009 Shoji, 2020, Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems, Nat. Catal., 3, 148, 10.1038/s41929-019-0419-z Liu, 2018, A promising application of optical hexagonal TaN in photocatalytic reactions, Angew. Chem. Int. Ed. Engl., 57, 16781, 10.1002/anie.201810886 Zhao, 2020, Photoassisted selective steam and dry reforming of methane to syngas catalyzed by rhodium-vanadium bimetallic oxide cluster Anions at room temperature, Angew. Chem. Int. Ed. Engl., 59, 21216, 10.1002/anie.202010026 Zhou, 2020, Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts, Nat. Energy, 5, 61, 10.1038/s41560-019-0517-9 Pawar, 2015, Study of short-term catalyst deactivation due to carbon deposition during biogas dry reforming on supported Ni catalyst, Energy Fuels, 29, 8047, 10.1021/acs.energyfuels.5b01862 Cheng, 2021, Dry reforming of CH4/CO2 by stable Ni nanocrystals on porous single-crystalline MgO monoliths at reduced temperature, Angew. Chem. Int. Ed. Engl., 60, 18792, 10.1002/anie.202106243 Liu, 2021, Solar-enhanced CO2 conversion with CH4 over synergetic NiCo alloy catalysts with light-to-fuel efficiency of 33.8%, Solar RRL 5. 2100185, 10.1002/solr.202170085 Tang, 2019, Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4, J. Am. Chem. Soc., 141, 7283, 10.1021/jacs.8b10910 Bu, 2020, Promotional effects of B-terminated defective edges of Ni/boron nitride catalysts for coking- and sintering-resistant dry reforming of methane, Appl. Catal. B Environ., 267, 118692, 10.1016/j.apcatb.2020.118692 Jones, 2016, Thermally stable single-atom platinum-on-ceria catalysts via atom trapping, Science, 353, 150, 10.1126/science.aaf8800 Geng, 2018, Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO, Angew. Chem. Int. Ed. Engl., 57, 6054, 10.1002/anie.201711255 Sun, 2021, Surface oxygen vacancies of Pd/Bi2MoO6-x acts as “Electron Bridge” to promote photocatalytic selective oxidation of alcohol, Appl. Catal. B Environ., 285, 119790, 10.1016/j.apcatb.2020.119790 Zu, 2021, Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets, Angew. Chem. Int. Ed. Engl., 60, 13840, 10.1002/anie.202101894 Zhang, 2022, Oxygen vacancies in Co3O4 promote CO2 photoreduction, Appl. Catal. B Environ., 300, 120729, 10.1016/j.apcatb.2021.120729 Wang, 2017, Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water, Adv. Mater., 29, 1701774, 10.1002/adma.201701774 Sun, 2018, Ultrathin WO3.0.33H2O nanotubes for CO2 photoreduction to acetate with high selectivity, J. Am. Chem. Soc., 140, 6474, 10.1021/jacs.8b03316 Wang, 2021, Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion, Adv. Funct. Mater., 32, 2109503, 10.1002/adfm.202109503 Fuping Pana, 2020, Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating, Appl. Catal. B., 260, 118189, 10.1016/j.apcatb.2019.118189 Bonmassar, 2019, In situ-determined catalytically active state of LaNiO3 in methane dry reforming, ACS Catal., 10, 1102, 10.1021/acscatal.9b03687 Bekheet, 2021, Steering the methane dry reforming reactivity of Ni/La2O3 catalysts by controlled in situ decomposition of doped La2NiO4 precursor structures, ACS Catal., 11, 43, 10.1021/acscatal.0c04290 Li, 2019, Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation, Nat. Commun., 10, 2359, 10.1038/s41467-019-10304-y Yan, 2020, Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction, Appl. Catal. B Environ., 268, 118401, 10.1016/j.apcatb.2019.118401 Christopher, 2012, Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures, Nat. Mater., 11, 1044, 10.1038/nmat3454 Zhang, 2020, Significant improvement in activity, durability, and light-to-fuel efficiency of Ni nanoparticles by La2O3 cluster modification for photothermocatalytic CO2 reduction, Appl. Catal. B Environ., 264, 118544, 10.1016/j.apcatb.2019.118544 Rabelo-Neto, 2018, CO2 reforming of methane over supported LaNiO3 perovskite-type oxides, Appl. Catal. B Environ., 221, 349, 10.1016/j.apcatb.2017.09.022 Takanabe, 2005, Influence of reduction temperature on the catalytic behavior of Co/TiO2 catalysts for CH4/CO2 reforming and its relation with titania bulk crystal structure, J. Catal., 230, 75, 10.1016/j.jcat.2004.11.005 Han, 2021, Highly active and anticoke Ni/CeO2 with ultralow Ni loading in chemical looping dry reforming via the strong metal-support interaction, ACS Sustain. Chem. Eng., 9, 17276, 10.1021/acssuschemeng.1c06079 Wu, 2019, Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO3 with enhanced CO2 adsorption and photoelectron enrichment for selective CO2 reduction with H2O to CH4, J. Catal., 377, 309, 10.1016/j.jcat.2019.07.037 Tan, 2019, Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm, Angew. Chem. Int. Ed. Engl., 58, 11860, 10.1002/anie.201904246 Jing, 2019, Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol, Appl. Catal. B Environ., 243, 10, 10.1016/j.apcatb.2018.10.027 Li, 2022, Efficient infrared-light-driven photothermal CO2 reduction over MOF-derived defective Ni/TiO2, Appl. Catal. B Environ., 303, 120905, 10.1016/j.apcatb.2021.120905 Munera, 2007, Kinetics and reaction pathway of the CO2 reforming of methane on Rh supported on lanthanum-based solid, J. Catal., 245, 25, 10.1016/j.jcat.2006.09.008 Azancot, 2021, IR spectroscopic insights into the coking-resistance effect of potassium on nickel-based catalyst during dry reforming of methane, Appl. Catal. B Environ., 285, 119822, 10.1016/j.apcatb.2020.119822 Rao, 2021, Insights into the nonthermal effects of light in dry reforming of methane to enhance the H2/CO ratio near unity over Ni/Ga2O3, ACS Catal., 11, 4730, 10.1021/acscatal.0c04826