An improved visual analytics framework for high-dimensional pareto-optimal front: a case for multi-objective portfolio optimization

A.K.M. Khaled Ahsan Talukder1, Kalyanmoy Deb1
1[Computational Optimization and Innovation (COIN) Laboratory, Michigan State University, East Lansing, USA]

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barber CB, Dobkin DP, Dobkin DP, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4):469–483. https://doi.org/10.1145/235815.235821

Branke J, Deb K, Dierolf H, Osswald M (2004) Finding knees in multi-objective optimization. In: Yao X et al (eds) Parallel problem solving from nature—PPSN VIII. Springer, Berlin Heidelberg, pp 722–731

Chiam SC, Tan KC, Al Mamum A (2008) Evolutionary multi-objective portfolio optimization in practical context. Int J Autom Comput 5(1):67–80. https://doi.org/10.1007/s11633-008-0067-2

Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601. https://doi.org/10.1109/TEVC.2013.2281535

Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02, pp. 825–830. https://doi.org/10.1109/CEC.2002.1007032

Edelsbrunner H, Kirkpatrick D, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans Inform Theory 29(4):551–559. https://doi.org/10.1109/TIT.1983.1056714

Filipič B, Tušar T (2018) A Taxonomy of Methods for Visualizing Pareto Front Approximations. In: Proceedings of the Genetic and Evol Comput Conf, pp. 649–656. ACM, New York, NY. https://doi.org/10.1145/3205455.3205607

He Z, Yen GG (2016) Visualization and performance metric in many-objective optimization. IEEE Trans Evol Comput 20(3):386–402. https://doi.org/10.1109/TEVC.2015.2472283

Kandogan E (2001) Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 107–116. ACM, New York, NY. https://doi.org/10.1145/502512.502530

Korhonen P, Wallenius J (1988) A Pareto race. Naval Res Logist (NRL) 35(6):615–623https://doi.org/10.1002/1520-6750(198812)35:6h615::AID-NAV3220350608i3.0.CO;2-K

Levy A (2017) The circumradius of a simplex via edge lengths. Independent Technical Report

Liu RY (1990) On a notion of data depth based on random simplices. Ann Stat 18(1):405–414

van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(Nov):2579–2605

Munkres J (1996) Elements of algebraic topology. Avalon Publishing

Rachmawati L, Srinivasan D (2009) Multiobjective evolutionary algorithm with controllable focus on the knees of the pareto front. IEEE Trans Evol Comput 13(4):810–824. https://doi.org/10.1109/TEVC.2009.2017515

Rubio-Sánchez M, Raya L, Díaz F, Sanchez A (2016) A comparative study between RadViz and Star Coordinates. IEEE Trans Vis Comput Graph 22(1):619–628. https://doi.org/10.1109/TVCG.2015.2467324

Sarykalin S, Serraino G, Uryasev S (2008) Value-at-Risk vs. conditional value-at-risk in risk management and optimization, chapter 13, pp 270–294. Informs. https://doi.org/10.1287/educ.1080.0052

Singh G, Mémoli F, Carlsson GE (2007) Topological methods for the analysis of high dimensional data sets and 3D object recognition. SPBG. https://doi.org/10.2312/SPBG/SPBG07/091-100

Talukder AKA, Deb K (2020) Paletteviz: a visualization method for functional understanding of high-dimensional Pareto-optimal data-sets to aid multi-criteria decision making. IEEE Comput Intell Mag 15(2):36–48

Tan SC, Tan J (2017) Lost in translation: The fundamental flaws in star coordinate visualizations. Procedia Comput Sci 108:2308–2312. https://doi.org/10.1016/j.procs.2017.05.087

Tušar T, Filipič B (2015) Visualization of pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method. IEEE Trans Evol Comput 19(2):225–245. https://doi.org/10.1109/TEVC.2014.2313407

Wierzbicki AP (1980) The Use of reference objectives in multiobjective optimization. In: Fandel G, Gal T (eds) Multiple criteria decision making theory and application. Springer, Berlin Heidelberg, pp 468–486

Wilkinson L, Friendly M (2009) The History of the cluster heat map. Am Stat 63(2):179–184. https://doi.org/10.1198/tas.2009.0033