An improved robust ADMM algorithm for quantum state tomography

Quantum Information Processing - Tập 15 - Trang 2343-2358 - 2016
Kezhi Li1,2, Hui Zhang1, Sen Kuang1, Fangfang Meng3, Shuang Cong1
1Department of Automation, University of Science and Technology of China, Hefei, People’s Republic of China
2Imperial College London, London, UK
3Hefei Uinversity, Hefei, People’s Republic of China

Tóm tắt

In this paper, an improved adaptive weights alternating direction method of multipliers algorithm is developed to implement the optimization scheme for recovering the quantum state in nearly pure states. The proposed approach is superior to many existing methods because it exploits the low-rank property of density matrices, and it can deal with unexpected sparse outliers as well. The numerical experiments are provided to verify our statements by comparing the results to three different optimization algorithms, using both adaptive and fixed weights in the algorithm, in the cases of with and without external noise, respectively. The results indicate that the improved algorithm has better performances in both estimation accuracy and robustness to external noise. The further simulation results show that the successful recovery rate increases when more qubits are estimated, which in fact satisfies the compressive sensing theory and makes the proposed approach more promising.

Tài liệu tham khảo

Smith, A., Riofro, C., Anderson, B., Martinez, H., Deutsch, I., Jessen, P.: Quantum state tomography by continuous measurement and compressed sensing. Phys. Rev. A 87, 030102 (2013) Wu, X., Xu, K.: Partial standard quantum process tomography. Quantum Inf. Process. 12(2), 1379–1393 (2013). doi:10.1007/s11128-012-0473-9 Heinosaari, T., Mazzarella, L., Wolf, M.: Quantum tomography under prior information. Commun. Math. Phys. 318(2), 355–374 (2013). doi:10.1007/s00220-013-1671-8 Wu, L.A., Byrd, M.: Self-protected quantum algorithms based on quantum state tomography. Quantum Inf. Process. 8(1), 1–12 (2009). doi:10.1007/s11128-008-0090-9 Baraniuk, R.: Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007). doi:10.1109/MSP.2007.4286571 Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006) Gross, D., Liu, Y., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105(15), 150401 (2010) Schwemmer, C., Tóth, G., Niggebaum, A., Moroder, T., Gross, D., Gühne, O., Weinfurter, H.: Experimental comparison of efficient tomography schemes for a six-qubit state. Phys. Rev. Lett. 113(5), 0401503 (2014) Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014) Shabani, A., Kosut, R.L., Mohseni, M., Rabitz, H., Broome, M.A., Almeida, M.P., Fedrizzi, A., White, A.G.: Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106(4), 100401 (2011). doi:10.1103/PhysRevLett.106.100401 Flammia, S.T., Gross, D., Liu, Y.K., Eisert, J.: Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14(9), 095022 (2012) Miosso, C., von Borries, R., Argaez, M., Velazquez, L., Quintero, C., Potes, C.: Compressive sensing reconstruction with prior information by iteratively reweighted least-squares. IEEE Trans. Signal Process. 57(6), 2424–2431 (2009). doi:10.1109/TSP.2009.2016889 Kosut, R., Lidar, D.: Quantum error correction via convex optimization. Quantum Inf. Process. 8(5), 443–459 (2009). doi:10.1007/s11128-009-0120-2 Liu, Y.: Universal low-rank matrix recovery from pauli measurements. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1638–1646 (2011) Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–22 (2011) He, B., Yang, H., Wang, S.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337–356 (2000). doi:10.1023/A:1004603514434 Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low rank representation. In: Proceedings of Advances in Neural Information Processing Systems, pp. 612–620 (2011) Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory 57(3), 1548–1566 (2011). doi:10.1109/TIT.2011.2104999 Wright, J., Ganesh, A., Min, K., Ma, Y.: Compressive principal component pursuit. J. IMA 2, 32–68 (2013) Yuan, X.M., Yang, J.: Sparse and low-rank matrix decomposition via alternating direction methods. Pac. J. Optim. (2009) Li, K., Cong, S.: A robust compressive quantum state tomography algorithm using admm. In: The 19th World Congress of the International Federation of Automatic Control, pp. 6878–6883 (2014) Cong S., Z.H., K., L.: An improved quantum state estimation algorithm via compressive sensing. In: 2014 IEEE international conference on Robio and Biomimetics, 5–10, pp. 2238–2343 (2014) Recht, B., Fazel, M., Parillo, P.: Guaranteed minimum rank solution of matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2007) Zyczkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys. 52(6), 062201 (2011) Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge, U.K. (2004) Candés, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 1–37 (2011) Candès, E., Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6(8), 227–254 (2006) Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl. 23, 969–985 (2007) Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)