An improved pathfinder algorithm using opposition-based learning for tasks scheduling in cloud environment
Tài liệu tham khảo
Kalra, 2015, A review of metaheuristic scheduling techniques in cloud computing, Egypt. Inform. J., vol. 16, 275, 10.1016/j.eij.2015.07.001
Bairathi, 2020, vol. 941, 821
Sapre, 2019, Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization, Soft Comput., vol. 23, 6023, 10.1007/s00500-018-3586-y
Yu, 2021, Opposition-based learning grey wolf optimizer for global optimization, Knowl. -Based Syst., vol. 226, 10.1016/j.knosys.2021.107139
Zhou, 2017, Opposition-based memetic search for the maximum diversity problem, IEEE Trans. Evol. Comput., vol. 21, 731, 10.1109/TEVC.2017.2674800
Verma, 2016, Opposition and dimensional based modified firefly algorithm, Expert Syst. Appl., vol. 44, 168, 10.1016/j.eswa.2015.08.054
Yapici, 2019, A new meta-heuristic optimizer: pathfinder algorithm, Appl. Soft Comput., vol. 78, 545, 10.1016/j.asoc.2019.03.012
H.R. Tizhoosh, ‘Opposition-Based Learning: A New Scheme for Machine Intelligence’, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 2005, vol. 1, pp. 695–701. doi: 10.1109/CIMCA.2005.1631345.
J. Kennedy’ and R. Eberhart, ‘Particle Swarm Optimization’, p. 7.
Mirjalili, 2016, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., vol. 27, 1053, 10.1007/s00521-015-1920-1
Yazdani, 2016, Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm, J. Comput. Des. Eng., vol. 3, 24
Topcuoglu, 2002, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst., vol. 13, 260, 10.1109/71.993206
Arabnejad, 2014, List scheduling algorithm for heterogeneous systems by an optimistic cost table, IEEE Trans. Parallel Distrib. Syst., vol. 25, 13, 10.1109/TPDS.2013.57
Aziza, 2020, A hybrid genetic algorithm for scientific workflow scheduling in cloud environment, Neural Comput. Appl., vol. 32, 15263, 10.1007/s00521-020-04878-8
Dorigo, 2019, vol. 272, 311
Mirjalili, 2014, Grey wolf optimizer, Adv. Eng. Softw., vol. 69, 46, 10.1016/j.advengsoft.2013.12.007
‘Mirjalili et Lewis - 2016 - The Whale Optimization Algorithm.pdf’.
Kalra, 2015, A review of metaheuristic scheduling techniques in cloud computing, Egypt. Inform. J., vol. 16, 275, 10.1016/j.eij.2015.07.001
Navarro, 2022, A review of the use of quasi-random number generators to initialize the population in meta-heuristic algorithms, Arch. Comput. Methods Eng., 10.1007/s11831-022-09759-y
Li, 2021, PSO+LOA: hybrid constrained optimization for scheduling scientific workflows in the cloud, J. Supercomput., 10.1007/s11227-021-03755-y
Abualigah, 2021, A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments, Clust. Comput., vol. 24, 205, 10.1007/s10586-020-03075-5
M. Mehravaran, F. Adibnia, ‘A Secur. Aware. Work. Sched. Hybrid. cloud Based PSO algorithm’ no. 1 2020 23.
Chandrasekaran, 2021, Test scheduling of system-on-chip using dragonfly and ant lion optimization algorithms, J. Intell. Fuzzy Syst., vol. 40, 4905, 10.3233/JIFS-201691
Neelima, 2020, An efficient load balancing system using adaptive dragonfly algorithm in cloud computing, Clust. Comput., vol. 23, 2891, 10.1007/s10586-020-03054-w
Mishra, 2021, Quantum-inspired binary chaotic salp swarm algorithm (QBCSSA)-based dynamic task scheduling for multiprocessor cloud computing systems, J. Supercomput., vol. 77, 10377, 10.1007/s11227-021-03695-7
Almezeini, 2017, Task scheduling in cloud computing using lion optimization algorithm, Int. J. Adv. Comput. Sci. Appl., vol. 8
Abualigah, 2021, Intelligent workflow scheduling for big data applications in IoT cloud computing environments, Clust. Comput., vol. 24, 2957, 10.1007/s10586-021-03291-7
Chhabra, 2022, Energy-aware bag-of-tasks scheduling in the cloud computing system using hybrid oppositional differential evolution-enabled whale optimization algorithm, Energies, vol. 15, 4571, 10.3390/en15134571
Abualigah, 2021, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., vol. 376, 10.1016/j.cma.2020.113609
Abualigah, 2022, Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer, Expert Syst. Appl., vol. 191, 10.1016/j.eswa.2021.116158
Abualigah, 2021, Aquila optimizer: a novel meta-heuristic optimization algorithm, Comput. Ind. Eng., vol. 157, 10.1016/j.cie.2021.107250
Agushaka, 2022, Dwarf mongoose optimization algorithm, Comput. Methods Appl. Mech. Eng., vol. 391, 10.1016/j.cma.2022.114570
Ezugwu, 2022, Prairie dog optimization algorithm, Neural Comput. Appl., 10.1007/s00521-022-07530-9
Oyelade, 2022, Ebola optimization search algorithm: a new nature-inspired metaheuristic optimization algorithm, IEEE Access, vol. 10, 16150, 10.1109/ACCESS.2022.3147821
Zhou, 2021, IADE: an improved differential evolution algorithm to preserve sustainability in a 6G network, IEEE Trans. Green Commun. Netw., vol. 5, 1747, 10.1109/TGCN.2021.3111909
Zhou, 2022, An adaptive energy-aware stochastic task execution algorithm in virtualized networked datacenters, IEEE Trans. Sustain. Comput., vol. 7, 371, 10.1109/TSUSC.2021.3115388
Zhou, 2021, A novel resource optimization algorithm based on clustering and improved differential evolution strategy under a cloud environment, ACM Trans. Asian Low -Resour. Lang. Inf. Process., vol. 20, 1, 10.1145/3462761
Zhou, 2021, AFED-EF: an energy-efficient vm allocation algorithm for IoT applications in a cloud data center, IEEE Trans. Green. Commun. Netw., vol. 5, 658, 10.1109/TGCN.2021.3067309
H.R. Tizhoosh, ‘Opposition-Based Learning: A New Scheme for Machine Intelligence’, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 2005, vol. 1, pp. 695–701. doi: 10.1109/CIMCA.2005.1631345.
pegasus, Workflow management system (2018). [Online]. Available: https://pegasus.isi.edu/.