An improved pathfinder algorithm using opposition-based learning for tasks scheduling in cloud environment

Journal of Computational Science - Tập 64 - Trang 101873 - 2022
Adnane Talha1, Anas Bouayad2, Mohammed Ouçamah Cherkaoui Malki1
1FSDM, LPAIS Lab, Sidi Mohamed Ben Abdellah University, Fez, Morocco
2Artificial Intelligence, Data Sciences and Emerging Systems Lab, Sidi Mohamed Ben Abdellah University, Fez, Morocco

Tài liệu tham khảo

Kalra, 2015, A review of metaheuristic scheduling techniques in cloud computing, Egypt. Inform. J., vol. 16, 275, 10.1016/j.eij.2015.07.001 Bairathi, 2020, vol. 941, 821 Sapre, 2019, Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization, Soft Comput., vol. 23, 6023, 10.1007/s00500-018-3586-y Yu, 2021, Opposition-based learning grey wolf optimizer for global optimization, Knowl. -Based Syst., vol. 226, 10.1016/j.knosys.2021.107139 Zhou, 2017, Opposition-based memetic search for the maximum diversity problem, IEEE Trans. Evol. Comput., vol. 21, 731, 10.1109/TEVC.2017.2674800 Verma, 2016, Opposition and dimensional based modified firefly algorithm, Expert Syst. Appl., vol. 44, 168, 10.1016/j.eswa.2015.08.054 Yapici, 2019, A new meta-heuristic optimizer: pathfinder algorithm, Appl. Soft Comput., vol. 78, 545, 10.1016/j.asoc.2019.03.012 H.R. Tizhoosh, ‘Opposition-Based Learning: A New Scheme for Machine Intelligence’, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 2005, vol. 1, pp. 695–701. doi: 10.1109/CIMCA.2005.1631345. J. Kennedy’ and R. Eberhart, ‘Particle Swarm Optimization’, p. 7. Mirjalili, 2016, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., vol. 27, 1053, 10.1007/s00521-015-1920-1 Yazdani, 2016, Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm, J. Comput. Des. Eng., vol. 3, 24 Topcuoglu, 2002, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst., vol. 13, 260, 10.1109/71.993206 Arabnejad, 2014, List scheduling algorithm for heterogeneous systems by an optimistic cost table, IEEE Trans. Parallel Distrib. Syst., vol. 25, 13, 10.1109/TPDS.2013.57 Aziza, 2020, A hybrid genetic algorithm for scientific workflow scheduling in cloud environment, Neural Comput. Appl., vol. 32, 15263, 10.1007/s00521-020-04878-8 Dorigo, 2019, vol. 272, 311 Mirjalili, 2014, Grey wolf optimizer, Adv. Eng. Softw., vol. 69, 46, 10.1016/j.advengsoft.2013.12.007 ‘Mirjalili et Lewis - 2016 - The Whale Optimization Algorithm.pdf’. Kalra, 2015, A review of metaheuristic scheduling techniques in cloud computing, Egypt. Inform. J., vol. 16, 275, 10.1016/j.eij.2015.07.001 Navarro, 2022, A review of the use of quasi-random number generators to initialize the population in meta-heuristic algorithms, Arch. Comput. Methods Eng., 10.1007/s11831-022-09759-y Li, 2021, PSO+LOA: hybrid constrained optimization for scheduling scientific workflows in the cloud, J. Supercomput., 10.1007/s11227-021-03755-y Abualigah, 2021, A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments, Clust. Comput., vol. 24, 205, 10.1007/s10586-020-03075-5 M. Mehravaran, F. Adibnia, ‘A Secur. Aware. Work. Sched. Hybrid. cloud Based PSO algorithm’ no. 1 2020 23. Chandrasekaran, 2021, Test scheduling of system-on-chip using dragonfly and ant lion optimization algorithms, J. Intell. Fuzzy Syst., vol. 40, 4905, 10.3233/JIFS-201691 Neelima, 2020, An efficient load balancing system using adaptive dragonfly algorithm in cloud computing, Clust. Comput., vol. 23, 2891, 10.1007/s10586-020-03054-w Mishra, 2021, Quantum-inspired binary chaotic salp swarm algorithm (QBCSSA)-based dynamic task scheduling for multiprocessor cloud computing systems, J. Supercomput., vol. 77, 10377, 10.1007/s11227-021-03695-7 Almezeini, 2017, Task scheduling in cloud computing using lion optimization algorithm, Int. J. Adv. Comput. Sci. Appl., vol. 8 Abualigah, 2021, Intelligent workflow scheduling for big data applications in IoT cloud computing environments, Clust. Comput., vol. 24, 2957, 10.1007/s10586-021-03291-7 Chhabra, 2022, Energy-aware bag-of-tasks scheduling in the cloud computing system using hybrid oppositional differential evolution-enabled whale optimization algorithm, Energies, vol. 15, 4571, 10.3390/en15134571 Abualigah, 2021, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., vol. 376, 10.1016/j.cma.2020.113609 Abualigah, 2022, Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer, Expert Syst. Appl., vol. 191, 10.1016/j.eswa.2021.116158 Abualigah, 2021, Aquila optimizer: a novel meta-heuristic optimization algorithm, Comput. Ind. Eng., vol. 157, 10.1016/j.cie.2021.107250 Agushaka, 2022, Dwarf mongoose optimization algorithm, Comput. Methods Appl. Mech. Eng., vol. 391, 10.1016/j.cma.2022.114570 Ezugwu, 2022, Prairie dog optimization algorithm, Neural Comput. Appl., 10.1007/s00521-022-07530-9 Oyelade, 2022, Ebola optimization search algorithm: a new nature-inspired metaheuristic optimization algorithm, IEEE Access, vol. 10, 16150, 10.1109/ACCESS.2022.3147821 Zhou, 2021, IADE: an improved differential evolution algorithm to preserve sustainability in a 6G network, IEEE Trans. Green Commun. Netw., vol. 5, 1747, 10.1109/TGCN.2021.3111909 Zhou, 2022, An adaptive energy-aware stochastic task execution algorithm in virtualized networked datacenters, IEEE Trans. Sustain. Comput., vol. 7, 371, 10.1109/TSUSC.2021.3115388 Zhou, 2021, A novel resource optimization algorithm based on clustering and improved differential evolution strategy under a cloud environment, ACM Trans. Asian Low -Resour. Lang. Inf. Process., vol. 20, 1, 10.1145/3462761 Zhou, 2021, AFED-EF: an energy-efficient vm allocation algorithm for IoT applications in a cloud data center, IEEE Trans. Green. Commun. Netw., vol. 5, 658, 10.1109/TGCN.2021.3067309 H.R. Tizhoosh, ‘Opposition-Based Learning: A New Scheme for Machine Intelligence’, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 2005, vol. 1, pp. 695–701. doi: 10.1109/CIMCA.2005.1631345. pegasus, Workflow management system (2018). [Online]. Available: https://pegasus.isi.edu/.