An improved high-performance lithium–air battery
Tóm tắt
Từ khóa
Tài liệu tham khảo
Scrosati, B., Hassoun, J. & Sun, Y.-K. Lithium ion batteries. A look into the future. Ener. Environ. Sci. 4, 3287–3295 (2011).
Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium-air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).
Debart, A., Peterson, A. J., Bao, J. & Bruce, P. G. α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 4521–4524 (2008).
Hassoun, J., Croce, F., Armand, M. & Scrosati, B. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angew. Chem. Int. Ed. 50, 2999–3002 (2011).
Lu, Y.-C., Gasteiger, H. A. & Shao-Horn, Y. Method development to evaluate the oxygen reduction activity of high-surface-area catalysts for Li–air batteries. Electrochem. Solid State Lett. 14, A70–A74 (2011).
Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).
Xu, W., Xiao, J., Zhang, J., Wang, D. & Zhang, J.-G. Optimization of nonaqueous electrolytes for primary lithium/air batteries operated in ambient environment. J. Electrochem. Soc. 156, A773–A779 (2009).
Kuboki, T., Okuyama, T., Ohsaki, T. & Takami, N. Lithium–air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sources 146, 766–769 (2005).
Hassoun, J. & Scrosati, B. Moving to a solid-state configuration: a valid approach to making lithium–sulfur batteries viable for practical applications. Adv. Mater. 22, 5198–5201 (2010).
Aurbach, D. & Granot, E. The study of electrolyte solutions based on solvents from the ‘glyme’ family (linear polyethers) for secondary Li battery systems. Electrochim. Acta 42, 697–718 (1997).
Wen, C. J., Boukamp, B. A., Huggins, R. A. & Weppner, W. Thermodynamic and mass transport properties of ‘LiAl’. J. Electrochem. Soc. 126, 2258–2266 (1979).
Thompson, A. H. Electrochemical potential spectroscopy: a new electrochemical measurement. J. Electrochem. Soc. 126, 608–616 (1979).
Mitchell, R. R., Gallant, B. M., Thompson, C. V. & Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2952–2958 (2011).
Black, R. et al. Screening for superoxide reactivity in Li–O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012).
Zanello, P. Inorganic Electrochemistry: Theory, Practice and Application (Royal Society of Chemistry, 2003).
Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2000).
Dees, D. W., Kawauchi, S., Abraham, D. P. & Prakash, J. Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode. J. Power Sources 189, 263–268 (2009).
Pyun, S.-I., Choi, Y.-M. & Jeng, I.-D. Effect of the lithium content on electrochemical lithium intercalation into amorphous and crystalline powdered Lil+ηMn2O4 electrodes prepared by sol–gel method. J. Power Sources 68, 593–599 (1997).
Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).
Choi, J.-W. et al. Rechargeable lithium sulfur battery containing toluene as additive. J. Power Sources 183, 441–445 (2008).
Cheon, S.-E. et al. Rechargeable lithium sulfur battery II. Rate capability and cycle characteristics. J. Electrochem. Soc. 150, A800–A805 (2003).