Thuật toán ngưỡng thu nhỏ lặp cải tiến nhanh với sai số cho bài toán phục hồi hình ảnh
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202, 150–159 (1996)
Chidume, C.E., Bashir, A.: Convergence of path and iterative method for families of nonexpansive mappings. Appl. Anal. 67, 117–129 (2008)
Klen, R., Manojlovic, V., Simic, S., Vuorinen, M.: Bernoulli inequality and hypergeometric functions. Proc. Am. Math. Soc. 142, 559–573 (2014)
Kunze, H., La Torre, D., Mendivil, F., Vrscay, E.R.: Generalized fractal n transforms and self-similar objects in cone metric spaces. Comput. Math. Appl. 64, 1761–1769 (2012)
Radenovic, S., Rhoades, B.E.: Fixed point theorem for two non-self mappings in cone metric spaces. Comput. Math. Appl. 57, 1701–1707 (2009)
Todorcevic, V.: Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics. Springer, Basel (2019)
Byrne, C.: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)
Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)
Combettes, P.L., Wajs, V.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)
Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)
Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple set split feasibility problem and its applications. Inverse Probl. 21, 2071–2084 (2005)
Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-sets feasibility problem. J. Math. Anal. 327, 1244–1256 (2007)
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)
Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. 72, 383–390 (1979)
Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
Hanjing, A., Suantai, S.: A fast image restoration algorithm based on a fixed point and optimization method. Mathematics 8, 378 (2020)
Padcharoen, A., Kumam, P.: Fixed point optimization method for image restoration. Thai J. Math. 18(3), 1581–1596 (2020)
Verma, M., Shukla, K.K.: A new accelerated proximal gradient technique for regularized multitask learning framework. Pattern Recognit. Lett. 95, 98–103 (2017)
Cholamjiak, P., Kesornprom, S., Pholasa, N.: Weak and strong convergence theorems for the inclusion problem and the fixed-point problem of nonexpansive mappings. Mathematics 7, 167 (2019)
Abubakar, J., Kumam, P., Ibrahim, A.H., Padcharoen, A.: Relaxed inertial Tseng’s type method for solving the inclusion problem with application to image restoration. Mathematics 8, 818 (2020)
Luo, Y.: An inertial splitting algorithm for solving inclusion problems and its applications to compressed sensing. J. Appl. Numer. Optim. 2(3), 279–295 (2020)
Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)
Tang, J.F., Chang, S.S., Yuan, F.: A strong convergence theorem for equilibrium problems and split feasibility problems in Hilbert spaces. Fixed Point Theory Appl. 2014, 36 (2014)
Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2006)
Geobel, K., Kirk, W.A.: Topic in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)
Takahashi, W., Xu, H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
He, S., Yang, C.: Solving the variational inequality problem defined on intersection of finite level sets. Abstr. Appl. Anal. 2013, Article ID 942315 (2013)
Baillon, J.B., Haddad, G.: Quelques proprietes des operateurs angle-bornes et cycliquement monotones. Isr. J. Math. 26, 137–150 (1977)
Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc., Ser. B, Stat. Methodol. 58, 267–288 (1996)
Tianchai, P.: The zeros of monotone operators for the variational inclusion problem in Hilbert spaces. J. Inequal. Appl. 2021, 126 (2021)
Guide to the MATLAB code for wavelet-based deblurring with FISTA, Available online: https://docplayer.net/128436542-Guide-to-the-matlab-code-for-wavelet-based-deblurring-with-fista.html (accessed on 1 June 2021)
Image Databases, Available online: http://www.imageprocessingplace.com/downloads_V3/root_downloads/image_databases/standard_test_images.zip (accessed on 1 June 2021)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)