An improved differential evolution algorithm for learning high-fidelity quantum controls
Tài liệu tham khảo
Rabitz, 2000, Whither the future of controlling quantum phenomena?, Science, 288, 824, 10.1126/science.288.5467.824
Brif, 2010, Control of quantum phenomena: past, present and future, New J Phys, 12, 10.1088/1367-2630/12/7/075008
Li, 2017, Hybrid quantum-classical approach to quantum optimal control, Phys Rev Lett, 118, 10.1103/PhysRevLett.118.150503
Lu, 2017, Enhancing quantum control by bootstrapping a quantum processor of 12 qubits, npj Quantum Inf, 3, 45, 10.1038/s41534-017-0045-z
Zahedinejad, 2015, High-fidelity single-shot toffoli gate via quantum control, Phys Rev Lett, 114, 10.1103/PhysRevLett.114.200502
Zahedinejad, 2016, Designing high-fidelity single-shot three-qubit gates: a machine-learning approach, Phys Rev Appl, 6, 10.1103/PhysRevApplied.6.054005
Gaebler, 2016, High-fidelity universal gate set for 9Be+ ion qubits, Phys Rev Lett, 117, 10.1103/PhysRevLett.117.060505
Monz, 2009, Realization of the quantum toffoli gate with trapped ions, Phys Rev Lett, 102, 10.1103/PhysRevLett.102.040501
Nielsen, 2010
Glaser, 2015, Training Schrödingers cat: quantum optimal control, Eur Phys J D, 69, 279, 10.1140/epjd/e2015-60464-1
Khaneja, 2005, Optimal control of coupled spin dynamics: design of nmr pulse sequences by gradient ascent algorithms, J Magn Reson, 172, 296, 10.1016/j.jmr.2004.11.004
Ryan, 2008, Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods, Phys Rev A, 78, 10.1103/PhysRevA.78.012328
Wu, 2018, Data-driven gradient algorithm for high-precision quantum control, Phys Rev A, 97, 10.1103/PhysRevA.97.042122
Feng, 2018, Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system, Phys Rev A, 98, 10.1103/PhysRevA.98.052341
Bukov, 2018, Reinforcement learning in different phases of quantum control, Phys Rev X, 8
Arrazola, 2018, Machine learning method for state preparation and gate synthesis on photonic quantum computers, Quantum Sci Technol, 4
Gao, 2018, Experimental machine learning of quantum states, Phys Rev Lett, 120, 10.1103/PhysRevLett.120.240501
An Z, Zhou D. Deep reinforcement learning for quantum gate control. arXiv:190208418, 2019.
Zhang XM, Wei ZZ, Asad R, et al. When reinforcement learning stands out in quantum control? A comparative study on state preparation. arXiv:190202157, 2019.
Banchi, 2016, Quantum gate learning in qubit networks: toffoli gate without time-dependent control, npj Quantum Inf, 2, 16019, 10.1038/npjqi.2016.19
Wu, 2019, Learning robust and high-precision quantum controls, Phys Rev A, 99, 10.1103/PhysRevA.99.042327
Kelly, 2014, Optimal quantum control using randomized benchmarking, Phys Rev Lett, 112, 10.1103/PhysRevLett.112.240504
Egger, 2014, Adaptive hybrid optimal quantum control for imprecisely characterized systems, Phys Rev Lett, 112, 10.1103/PhysRevLett.112.240503
Shir, 2012, Quantum control experiments as a testbed for evolutionary multi-objective algorithms, Genet Program Evol M, 13, 445, 10.1007/s10710-012-9164-7
Dong DY, Xing X, Ma HL, et al. Differential evolution for quantum robust control: algorithm, applications and experiments. arXiv:1702.03946, 2017.
Sun, 2015, Ensemble control of open quantum systems using differential evolution, 1
Storn, 1997, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, J Global Optim, 11, 341, 10.1023/A:1008202821328
Das, 2011, Differential evolution: a survey of the state-of-the-art, IEEE Trans Evol Comput, 15, 4, 10.1109/TEVC.2010.2059031
Das, 2016, Recent advances in differential evolution-an updated survey, Swarm Evol Comput, 27, 1, 10.1016/j.swevo.2016.01.004
Ali, 2011, Differential evolution with generalized differentials, J Comput Appl Math, 235, 2205, 10.1016/j.cam.2010.10.018
Cai, 2013, Differential evolution with neighborhood and direction information for numerical optimization, IEEE T Cybern, 43, 2202, 10.1109/TCYB.2013.2245501
Zhang, 2015, A directional mutation operator for differential evolution algorithms, Appl Soft Comput, 30, 529, 10.1016/j.asoc.2015.02.005
Khaneja, 2001, Time optimal control in spin systems, Phys Rev A, 63, 10.1103/PhysRevA.63.032308
Ferrie, 2015, Robust and efficient in situ quantum control, Phys Rev A, 91, 10.1103/PhysRevA.91.052306