An improved approach for testing gravitational redshift via satellite-based three frequency links combination

Advances in Space Research - Tập 68 - Trang 2776-2790 - 2021
Ziyu Shen1, Wen-Bin Shen2,3, Tengxu Zhang1, Lin He1, Zhan Cai1, Xiaojuan Tian1, Pengfei Zhang2
1School of Resource, Environmental Science and Engineering, Hubei University of Science and Technology, Xianning 437100, China
2Time and Frequency Geodesy Research Center, Department of Geophysics, School of Geodesy and Geomatics, Wuhan University, Wuhan 430072, China
3Key Lab of Surveying Eng. and Remote Sensing, Wuhan University, Wuhan 430072, China

Tài liệu tham khảo

Altschul, 2015, Quantum tests of the einstein equivalence principle with the STE–QUEST space mission, Adv. Space Res., 55, 501, 10.1016/j.asr.2014.07.014 Bjerhammar, 1985, On a relativistic geodesy, Bull. Am. Assoc. Hist. Nurs., 59, 207 Black, 1978, An easily implemented algorithm for the tropospheric range correction, J. Geophys. Res., 83, 1825, 10.1029/JB083iB04p01825 Blanchet, 2001, Relativistic theory for time and frequency transfer to order c-3, Astron. Astrophys., 370, 320, 10.1051/0004-6361:20010233 Boehm, 2006, Troposphere mapping functions for GPS and very long baseline interferometry from european centre for medium-range weather forecasts operational analysis data, J. Geophys. Res., 111 Brunner, 1991, An improved model for the dual frequency ionospheric correction of GPS observations, Manuscripta Geodaetica, 16, 205 Cacciapuoti, 2011, Atomic clock ensemble in space ( ACES ), European Space Agency, (Special Publication) ESA SP, 327, 295 Corstanje, 2017, The effect of the atmospheric refractive index on the radio signal of extensive air showers, Astropart. Phys., 89, 23, 10.1016/j.astropartphys.2017.01.009 Davies, 1962, A study of F 2 -layer effects as observed with a doppler technique, J. Geophys. Res., 67, 601, 10.1029/JZ067i002p00601 Delva, 2019, Chronometric geodesy: Methods and applications, 25 Delva, 2015, Test of the gravitational redshift with stable clocks in eccentric orbits: application to galileo satellites 5 and 6, Classical Quantum Gravity, 32, 232003, 10.1088/0264-9381/32/23/232003 Delva, 2018, Gravitational redshift test using eccentric galileo satellites, Phys. Rev. Lett., 121, 231101, 10.1103/PhysRevLett.121.231101 Einstein, 1915 Folkner, 2014, The planetary and lunar ephemerides DE430 and DE431, Interplanetary Network Progress Report, 196 Griffiths, 2009, On the precision and accuracy of IGS orbits, J. Geodesy, 83, 277, 10.1007/s00190-008-0237-6 Groten, 2000, Parameters of common relevance of astronomy, geodesy, and geodynamics, J. Geodesy, 74, 134, 10.1007/s00190-000-0134-0 Grotti, 2018, Geodesy and metrology with a transportable optical clock, Nat. Phys., 14, 437, 10.1038/s41567-017-0042-3 Hernández-Pajares, 1999, New approaches in global ionospheric determination using ground GPS data, J. Atmos. Sol. Terr. Phys., 61, 1237, 10.1016/S1364-6826(99)00054-1 Herrmann, 2018, Test of the gravitational redshift with galileo satellites in an eccentric orbit, Phys. Rev. Lett., 121, 231102, 10.1103/PhysRevLett.121.231102 Hoque, 2007, Higher order ionospheric effects in precise GNSS positioning, J. Geodesy, 81, 259, 10.1007/s00190-006-0106-0 Hoque, 2008, Estimate of higher order ionospheric errors in GNSS positioning, Radio Sci., 43, 10.1029/2007RS003817 Kang, 2006, Precise orbit determination for the GRACE mission using only GPS data, J. Geodesy, 80, 322, 10.1007/s00190-006-0073-5 Kaplan, 2017 Kedar, 2003, The effect of the second order GPS ionospheric correction on receiver positions: Second Order IONOSPHERE GPS CORRECTION, Geophys. Res. Lett., 30, 1009, 10.1029/2003GL017639 Kleppner, 1970, An orbiting clock experiment to determine the gravitational red shift, Astrophys. Space Sci., 6, 13, 10.1007/BF00653616 Kopeikin, 2016, Chronometric measurement of orthometric height differences by means of atomic clocks, Gravitation Cosmol., 22, 234, 10.1134/S0202289316030099 Kovalev, 2014, The RadioAstron space VLBI project, 1 Lagler, 2013, GPT2: Empirical slant delay model for radio space geodetic techniques, Geophys. Res. Lett., 40, 1069, 10.1002/grl.50288 Leick, 2015, Troposphere and ionosphere, 475 Leslie, F.W., Justus, C.G., 2011. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version. Technical Report. Linet, 2002, Time transfer and frequency shift to the order 1/c4 in the field of an axisymmetric rotating body, Phys. Rev. D Part. Fields, 66, 024045, 10.1103/PhysRevD.66.024045 Lion, 2017, Determination of a high spatial resolution geopotential model using atomic clock comparisons, J. Geodesy, 91, 597, 10.1007/s00190-016-0986-6 Litvinov, 2018, Probing the gravitational redshift with an earth-orbiting satellite, Phys. Lett. A, 382, 2192, 10.1016/j.physleta.2017.09.014 Meynadier, 2018, Atomic clock ensemble in space (ACES) data analysis, Classical Quantum Gravity, 35, 035018, 10.1088/1361-6382/aaa279 Moyer, 2003 Nakamura, 2020, Coherent optical clock down-conversion for microwave frequencies with 10–18 instability, Science, 368, 889, 10.1126/science.abb2473 Namazov, 1975, Doppler frequency shift during ionospheric propagation of decameter radio waves (review), Radiophys. Quantum Electron., 18, 345, 10.1007/BF01036419 Nunes, 2020, The gravitational redshift monitored with RadioAstron from near earth up to 350,000 km, Adv. Space Res., 65, 790, 10.1016/j.asr.2019.03.012 Oelker, 2019, Demonstration of 4.8imes10-17 stability at 1 s for two independent optical clocks, Nat. Photonics, 13, 714, 10.1038/s41566-019-0493-4 Pavlis, 2012, The development and evaluation of the earth gravitational model 2008 (EGM2008), J. Geophys. Res.: Solid Earth, 117, B04406 Petrie, 2011, A review of higher order ionospheric refraction effects on dual frequency GPS, Surv. Geophys., 32, 197, 10.1007/s10712-010-9105-z Pi, 1997, Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 24, 2283, 10.1029/97GL02273 Pound, 1960, Variation with temperature of the energy of recoil-free gamma rays from solids, Phys. Rev. Lett., 4, 274, 10.1103/PhysRevLett.4.274 Rüeger, J.M., 2002. Refractive index formulae for radio waves. In FIG XXII International Congress, Washington, DC, USA, 19-26 April 2002. Saastamoinen, J., 1972. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites: Henriksen/The use of artificial satellites for geodesy. In: Henriksen, S.W., Mancini, A., Chovitz, B.H. (Eds.), The Use of Artificial Satellites for Geodesy. American Geophysical Union volume 70 of Geophysical Monograph Series, Washington, D.C., pp. 247–251. Sánchez, 2017, Vertical datum unification for the international height reference system (IHRS), Geophys. J. Int., 209, 570 Savalle, 2019, Gravitational redshift test with the future ACES mission, Classical Quantum Gravity, 36, 245004, 10.1088/1361-6382/ab4f25 Shen, 2019, Formulation of determining the gravity potential difference using ultra-high precise clocks via optical fiber frequency transfer technique, J. Earth Sci., 30, 422, 10.1007/s12583-018-0834-0 Shen, 2016, Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on doppler cancellation system, Geophys. J. Int., 206, 1162, 10.1093/gji/ggw198 Shen, 2017, Determination of gravitational potential at ground using optical-atomic clocks on board satellites and on ground stations and relevant simulation experiments, Surv. Geophys., 38, 757, 10.1007/s10712-017-9414-6 Takamoto, 2020, Test of general relativity by a pair of transportable optical lattice clocks, Nat. Photonics, 14, 411, 10.1038/s41566-020-0619-8 Takano, 2016, Geopotential measurements with synchronously linked optical lattice clocks, Nat. Photonics, 10, 662, 10.1038/nphoton.2016.159 Thébault, 2015, International geomagnetic reference field: the 12th generation, Earth Planets Space, 67, 79, 10.1186/s40623-015-0228-9 Van Camp, 2005, Tsoft: graphical and interactive software for the analysis of time series and earth tides, Comput. Geosci., 31, 631, 10.1016/j.cageo.2004.11.015 Vessot, 1979, A test of the equivalence principle using a space-borne clock, Gen. Relat. Grav., 10, 181, 10.1007/BF00759854 Vessot, 1980, Test of relativistic gravitation with a space-borne hydrogen maser, Phys. Rev. Lett., 45, 2081, 10.1103/PhysRevLett.45.2081 Wang, 2020, Centimeter-level precise orbit determination for the Luojia-1A satellite using BeiDou observations, Remote Sensing, 12, 2063, 10.3390/rs12122063 Wikipedia contributors, 2021. STE-QUEST — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=STE-QUEST&oldid=1004195585. Accessed: 2021-4-25. Will, 2014, The confrontation between general relativity and experiment, Living Rev. Relativ., 17, 4, 10.12942/lrr-2014-4 Wolf, 1995, Relativistic theory for clock syntonization and the realization of geocentric coordinate times, Astron. Astrophys., 304, 653