An immunogenic personal neoantigen vaccine for patients with melanoma

Nature - Tập 547 Số 7662 - Trang 217-221 - 2017
Patrick A. Ott1, Zhuting Hu1, Derin B. Keskin1, Sachet A. Shukla1, Jing Sun1, David J. Bozym1, Wandi Zhang1, Adrienne Luoma2, Anita Giobbie‐Hurder3, Lauren Peter4, Christina Chen1, Oriol Olive1, Todd A. Carter5, Shuqiang Li5, David Lieb5, Thomas Eisenhaure5, Evisa Gjini6, Jonathan Stevens7, William J. Lane7, Indu Javeri8, Kaliappanadar Nellaiappan8, Andres M. Salazar9, Heather Daley1, Michael S. Seaman4, Elizabeth I. Buchbinder10, Charles H. Yoon10, Maegan Harden5, Niall J. Lennon5, Stacey Gabriel5, Scott J. Rodig6, Dan H. Barouch10, Jon C. Aster10, Gad Getz5, Kai W. Wucherpfennig10, Donna Neuberg3, Jerome Ritz10, Eric S. Lander5, Edward F. Fritsch5, Nir Hacohen5, Catherine J. Wu5
1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, 02215, Massachusetts, USA
2Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, 02215, Massachusetts, USA
3Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, 02215, Massachusetts, USA
4Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, 02215, Massachusetts, USA
5Broad Institute of MIT and Harvard, Cambridge, 02142, Massachusetts, USA
6Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, 02215, Massachusetts, USA
7Department of Pathology, Brigham and Women’s Hospital, Boston, 02215, Massachusetts, USA
8CuriRx, Inc., Wilmington, 01887, Massachusetts, USA
9Oncovir, Inc., 3203 Cleveland Avenue, NW, Washington DC, 20008, USA
10Harvard Medical School, Boston, 02215, Massachusetts, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015)

Hacohen, N., Fritsch, E. F., Carter, T. A., Lander, E. S. & Wu, C. J. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol. Res. 1, 11–15 (2013)

Kenter, G. G. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361, 1838–1847 (2009)

Caskey, M. et al. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J. Exp. Med. 208, 2357–2366 (2011)

Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015)

Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J. & Eisen, H. N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565–571 (1996)

Stephen, T. L. et al. SATB1 expression governs epigenetic repression of PD-1 in tumor-reactive T cells. Immunity 46, 51–64 (2017)

Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014)

Schumacher, T. et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512, 324–327 (2014)

van Rooij, N. et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31, e439–e442 (2013)

Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015)

Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2015)

Prickett, T. D. et al. Durable complete response from metastatic melanoma after transfer of autologous T cells recognizing 10 mutated tumor antigens. Cancer Immunol. Res. 4, 669–678 (2016)

Carreno, B. M. et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015)

Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015)

Martin, S. D. et al. Low mutation burden in ovarian cancer may limit the utility of neoantigen-targeted vaccines. PLoS ONE 11, e0155189 (2016)

Stern, L. J. et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368, 215–221 (1994)

Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015)

Falk, K., Rötzschke, O., Stevanovic´, S., Jung, G. & Rammensee, H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991)

Mildner, A. & Jung, S. Development and function of dendritic cell subsets. Immunity 40, 642–656 (2014)

Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502 (2017)

Haabeth, O. A. et al. Idiotype-specific CD4+ T cells eradicate disseminated myeloma. Leukemia 30, 1216–1220 (2016)

Hirschhorn-Cymerman, D. et al. Induction of tumoricidal function in CD4+ T cells is associated with concomitant memory and terminally differentiated phenotype. J. Exp. Med. 209, 2113–2126 (2012)

Abelin, J. G. et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46, 315–326 (2017)

Fisher, S. et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 12, R1 (2011)

Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009)

Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011)

Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011)

Cibulskis, K. et al. ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27, 2601–2602 (2011)

DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011)

Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817 (2012)

Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011)

Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423–E2429 (2015)

Torres-García, W. et al. PRADA: pipeline for RNA sequencing data analysis. Bioinformatics 30, 2224–2226 (2014)

Hoof, I. et al. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61, 1–13 (2009)

Lundegaard, C., Lund, O. & Nielsen, M. Prediction of epitopes using neural network based methods. J. Immunol. Methods 374, 26–34 (2011)

Roemer, M. G. et al. Classical hodgkin lymphoma with reduced β2M/MHC Class i expression is associated with inferior outcome independent of 9p24.1 status. Cancer Immunol. Res. 4, 910–916 (2016)

Cai, A. et al. Mutated BCR-ABL generates immunogenic T-cell epitopes in CML patients. Clin. Cancer Res. 18, 5761–5772 (2012)

Lu, Y. C. et al. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clinical Cancer Res. 20, 3401–3410 (2014)

Day, C. L. et al. Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest. 112, 831–842 (2003)

Call, M. J. et al. In vivo enhancement of peptide display by MHC class II molecules with small molecule catalysts of peptide exchange. J. Immunol. 182, 6342–6352 (2009)

Hashimshony, T. et al. CEL-seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol. 17, 77 (2016)

Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015)

Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014)

Lundegaard, C. et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 36, W509–12 (2008)