An imaginary refined count for some real rational curves

Thomas Blomme1
1Université de Genève, Rue du Conseil Général 5-7, 1205, Geneva, Switzerland

Tóm tắt

AbstractIn 2015, Mikhalkin introduced a refined count for the real rational curves in a toric surface which pass through a set consisting of real points and pairs of complex conjugated points chosen generically on the toric boundary of the surface. He then proved that the result of this refined count depends only on the number of pairs of complex conjugated points on each toric divisor. Using the tropical geometry approach and the correspondence theorem, we address the computation of the refined count when the pairs of complex conjugated points are chosen purely imaginary and belonging to the same component of the toric boundary. Despite the non-genericity, we relate this refined count for purely imaginary values to the refined invariant of Mikhalkin for generic values. That allows us to extend the relation between these classical refined invariants and the tropical refined invariants from Block–Göttsche.

Từ khóa


Tài liệu tham khảo

Block, F., Göttsche, L.: Refined curve counting with tropical geometry. Compos. Math. 152(1), 115–151 (2016)

Blomme, T.: A Caporaso-Harris type formula for relative refined invariants. arXiv:1912.06453 (2019)

Blomme, T.: Computation of refined toric invariants ii. arXiv:2007.02275 (2020)

Brugallé, E., Shaw, K.: A bit of tropical geometry. Am. Math. Monthly. 121(7), 563–589 (2014)

Buchholz, A., Markwig, H.: Tropical covers of curves and their moduli spaces. Commun. Contemp. Math. 17(01), 1350045 (2015)

Cavalieri, R., Johnson, P., Markwig, H.: Tropical Hurwitz numbers. J. Algebraic Combin. 32(2), 241–265 (2010)

Forsgård, J., Johansson, P.: On the order map for hypersurface coamoebas. Ark. Mat. 53(1), 79–104 (2015)

Göttsche, L., Schroeter, F.: Refined broccoli invariants. J. Algebraic Geom. 28(1), 1–41 (2019)

Göttsche, L., Shende, V.: Refined curve counting on complex surfaces. Geom. Topol. 18(4), 2245–2307 (2014)

Itenberg, I., Mikhalkin, G.: On Block–Göttsche multiplicities for planar tropical curves. Int. Math. Res. Not. 2013(23), 5289–5320 (2013)

Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435 (2008)

Mikhalkin, G.: Enumerative tropical algebraic geometry in R$$^2$$. J. Am. Math. Soc. 18(2), 313–377 (2005)

Mikhalkin, G.: Quantum indices and refined enumeration of real plane curves. Acta Math. 219(1), 135–180 (2017)

Shustin, E.: A tropical approach to enumerative geometry. St. Petersburg Math. J. 17(2), 343–375 (2006)

Shustin, E.: A tropical calculation of the Welschinger invariants of real toric del Pezzo surfaces. J. Algebraic Geom. 15(2), 285–322 (2006)

Tyomkin, I.: Tropical geometry and correspondence theorems via toric stacks. Math. Ann. 353(3), 945–995 (2012)

Tyomkin, I.: Enumeration of rational curves with cross-ratio constraints. Adv. Math. 305, 1356–1383 (2017)

Welschinger, J.-Y.: Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry. Invent. Math. 162(1), 195–234 (2005)