An operando spatially resolved study of alkaline battery discharge using a novel hyperspectral detector and X-ray tomography

Journal of Applied Crystallography - Tập 53 Số 6 - Trang 1434-1443 - 2020
Thomas Connolley1, Oxana V. Magdysyuk1, Š. Michalik1, Phoebe K. Allan2, Manuela Klaus3, Paul H. Kamm3, Francisco García‐Moreno3, Jennifer Nelson4, Matthew C. Veale5, Matthew D. Wilson5
1Diamond Light Source Ltd, Harwell Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
2School of Chemistry, University of Birmingham, Haworth Building, Edgbaston, Birmingham B15 2TT, United Kingdom
3Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
4Duracell Inc., Bethel, Connecticut, USA
5Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom

Tóm tắt

An experimental technique is described for the collection of time-resolved X-ray diffraction information from a complete commercial battery cell during discharging or charging cycles. The technique uses an 80 × 80 pixel 2D energy-discriminating detector in a pinhole camera geometry which can be used with a polychromatic X-ray source. The concept was proved in a synchrotron X-ray study of commercial alkaline Zn–MnO2 AA size cells. Importantly, no modification of the cell was required. The technique enabled spatial and temporal changes to be observed with a time resolution of 20 min (5 min of data collection with a 15 min wait between scans). Chemical changes in the cell determined from diffraction information were correlated with complementary X-ray tomography scans performed on similar cells from the same batch. The clearest results were for the spatial and temporal changes in the Zn anode. Spatially, there was a sequential transformation of Zn to ZnO in the direction from the separator towards the current collector. Temporally, it was possible to track the transformation of Zn to ZnO during the discharge and follow the corresponding changes in the cathode.

Từ khóa


Tài liệu tham khảo

Aarle, 2016, Opt. Express, 24, 25129, 10.1364/OE.24.025129

Arlt, 2014, Phys. Chem. Chem. Phys., 16, 22273, 10.1039/C4CP02878C

Atwood, R. C., Bodey, A. J., Price, S. W. T., Basham, M. & Drakopoulos, M. (2015). Phil. Trans. R. Soc. A, 373, 20140398.

Bhadra, 2015, J. Mater. Chem. A, 3, 9395, 10.1039/C5TA01576F

Drakopoulos, 2015, J. Synchrotron Rad., 22, 828, 10.1107/S1600577515003513

Egan, 2014, Proc. R. Soc. A, 470, 20130629, 10.1098/rspa.2013.0629

Egan, 2015, J. Appl. Cryst., 48, 269, 10.1107/S1600576715000801

Elleaume, 1995, J. Synchrotron Rad., 2, 209, 10.1107/S0909049595008685

Faegh, 2018, J. Electrochem. Soc., 165, A2528, 10.1149/2.0321811jes

Finegan, 2017, Energy Environ. Sci., 10, 1377, 10.1039/C7EE00385D

Finegan, D. P., Scheel, M., Robinson, J. B., Tjaden, B., Hunt, I., Mason, T. J., Millichamp, J., Di Michiel, M., Offer, G. J., Hinds, G., Brett, D. J. L. & Shearing, P. R. (2015). Nat. Commun. 6, 6924.

Franke-Lang, 2017, J. Power Sources, 370, 45, 10.1016/j.jpowsour.2017.10.010

Gallaway, 2014, J. Mater. Chem. A, 2, 2757, 10.1039/C3TA15169G

Gallaway, 2016, J. Power Sources, 321, 135, 10.1016/j.jpowsour.2016.05.002

Gallaway, 2015, J. Electrochem. Soc., 162, A162, 10.1149/2.0811501jes

Ghodbane, 2012, J. Power Sources, 206, 454, 10.1016/j.jpowsour.2012.01.103

Haibel, 2010, J. Electrochem. Soc., 157, A387, 10.1149/1.3294566

Harrison, S., Heathcote, R., Clarke, R., Green, J., Notley, M., Carroll, D. & Neely, D. (2014). Development of a High Repetition X-ray Pinhole Camera. https://www.clf.stfc.ac.uk/Pages/81.pdf. Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK.

Ingale, 2015, J. Power Sources, 276, 7, 10.1016/j.jpowsour.2014.11.010

Jacques, 2013, Analyst, 138, 755, 10.1039/C2AN36157D

Jiménez, 2018, J. Synchrotron Rad., 25, 1790, 10.1107/S1600577518011657

Jones, 2009, Nucl. Instrum. Methods Phys. Res. A, 604, 34, 10.1016/j.nima.2009.01.046

Kirshenbaum, 2015, Science, 347, 149, 10.1126/science.1257289

Klaus, 2016, J. Large-Scale Res. Facil., 2, A40, 10.17815/jlsrf-2-63

Koch-Mehrin, K. A. L., Lees, J. E. & Bugby, S. L. (2020). Nucl. Instrum. Methods Phys. Res. A, 976, 164241.

Liang, 2013, J. Electrochem. Soc., 160, A1299, 10.1149/2.115308jes

Liotti, 2015, Sci. Rep., 5, 15988, 10.1038/srep15988

Marschilok, 2020, Phys. Chem. Chem. Phys., 22, 20972, 10.1039/D0CP00778A

Osenberg, 2018, Materials (Basel), 11, 1486, 10.3390/ma11091486

Ramachandran, 1971, Proc. Natl Acad. Sci. USA, 68, 2236, 10.1073/pnas.68.9.2236

Rasband, W. S. (1997-2018). ImageJ, US National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij/.

Schneider, 2012, Nat. Methods, 9, 671, 10.1038/nmeth.2089

Schröder, 2014, Electrochem. Commun., 40, 88, 10.1016/j.elecom.2014.01.001

Seller, 2011, J. Instrum., 6, C12009, 10.1088/1748-0221/6/12/C12009

Strobridge, 2015, Chem. Mater., 27, 2374, 10.1021/cm504317a

Thomas, 2010, Phys. Rev. Spec. Top. Accel. Beams, 13, 022805, 10.1103/PhysRevSTAB.13.022805

Turney, 2017, Chem. Mater., 29, 4819, 10.1021/acs.chemmater.7b00754

Veale, 2018, Synchrotron Radiat. News, 31(6), 28, 10.1080/08940886.2018.1528431

Veale, M. C., Bell, S. J., Seller, P., Wilson, M. D. & Kachkanov, V. (2012). J. Instrum. 7, P07017.

Wadeson, N. & Bashamar, M. (2016). arXiv:1610.08015 [cs.DC].