An extension of a result by Dinaburg and Sinai on quasi-periodic potentials

Commentarii Mathematici Helvetici - Tập 59 Số 1 - Trang 39-85 - 1984
Jürgen Moser1, Jürgen Pöschel1
1Dept. of Mathematics, ETH-Zentrum, Zürich

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnold, V. I.,Proof of a theorem by A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surveys18 (1963), No. 5, 9–36.

Avron, J. andSimon, B.,Almost periodic Schrödinger operators I. Limit periodic potentials. Commun. Math. Phys.82 (1981), 101–120.

Avron, J. andSimon, B.,Almost periodic Schrödinger operators II. The integrated density of states. Duke Math. J. To appear.

Coppel, W. A.,Dichotomies in Stability Theory. Lecture Notes in Mathematics629 (1978).

Dinaburg, E. I. andSinai, Ya. G.,The one-dimensional Schrödinger equation with a quasiperiodic potential, Functional Anal. Appl.9 (1975), 279–289.

Johnson, R. A.,On almost-periodic linear differential systems of Millionscikov and Vinograd. J. Anal. Appl.85 (1982), 452–460.

Johnson, R. A. andMoser, J.,The rotation number for almost periodic potentials, Commun. Math. Phys.84 (1982), 403–438.

Johnson, R. A. andSell, G. R.,Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems, J. Diff. Eq.41 (1981), 262–288.

Kolmogorov, A. N.,On the conservation of conditionally periodic motions under small perturbations of the Hamiltonian, Dokl. Akad. Nauk SSSR98 (1954), 527–530 [In Russian].

Kotani, S.,Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. Preprint Kyoto University 1982.

Levitan, B. M.,Almost periodicity of infinite-zone potentials. Math. USSR Izv.18 (1982), 249–273.

Magnus, W. andWinkler, S.,Hill's equations. Interscience, 1966.

Millionscikov, V. M.,Proof of the existence of irregular systems of linear differential equations with quasiperiodic coefficients, Diff. Equ.5 (1969), 1475–1478.

Moser, J.,Convergent series expansions for quasi-periodic motions, Math. Ann.169 (1967), 136–176.

Moser, J.,An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum, Comment. Math. Helv.56 (1981), 198–224.

Rüssmann, H.,On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus. Lecture Notes in Physics38, (1975), 598–624.

Rüssmann, H.,Note on sums containing small divisors, Comm. Pure Appl. Math.29 (1976), 755–758.

Rüssmann, H.,On the one-dimensional Schrödinger equation with a quasi-periodic potential. Annals of the New York Acad. Sci.357 (1980), 90–107.

Sacker, R. J. andSell, G. R.,A spectral theory for linear differential systems, J. Diff. Equ.27 (1978), 320–358.

Scharf, G.,Fastperiodische Potentiale, Helv. Phys. Acta24 (1965), 573–605.

Simon, B.,Almost periodic Schrödinger operators: a review, Adv. Appl. Math.3 (1982), 463–490.

Vinograd, R. E.,A problem suggested by N. P. Erugin, Diff. Equ.11 (1975), 474–478.