An extension for matrices of Young’s inequality
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ando, T.: Matrix Young inequalities. Oper. Theory Adv. Appl. 75, 33–38 (1995)
Abbas, H., Ghabries, M.M.: More results related to geometric mean and singular values for matrices. Linear Multilinear Algebra 70(5), 878–887 (2022)
Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)
Bhatia, R., Kittaneh, F.: On the singular values of a product of operators. SIAM J. Matrix Anal. Appl. 11, 272–277 (1990)
Fu, X., Lau, P.S., Tam, T.Y.: Linear maps of positive partial transpose matrices and singular value inequalities. Math. Inequal. Appl. 23(4), 1459–1468 (2020)
Furuichi, S.: Further improvements of Young inequality. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 113, 255–266 (2019)
Huy, D.Q., Van, D.T.T., Xinh, D.T.: Some generalizations of real power form for Young-type inequalities and their applications. Linear Algebra Appl. 656, 368–384 (2023)
Jocić, D.R., Krtinić, Đ, Lazarević, M.: Extensions of the arithmetic-geometric means and Young’s norm inequalities to accretive operators, with applications. Linear Multilinear Algebra 70(20), 4835–4875 (2022)
Kaur, R., Singh, M., Aujla, J.S.: Generalized matrix version of reverse Hölder inequality. Linear Algebra Appl. 434, 636–640 (2011)
Larotonda, G.: Young’s (in)equality for compact operators. Stud. Math. 233(2), 169–181 (2016)
Lin, M.: A singular value inequality related to a linear map. Electron. J. Linear Algebra 31, 120–124 (2016)
Lin, M.: New properties for certain positive semidefinite matrices. Linear Algebra Appl. 520, 32–43 (2017)
Simon, B.: Trace Ideals and Their Applications. American Mathematical Society, Providence (2005)
Tohyama, H., Kamei, E., Watanabe, M.: Operator inequalities related to Young’s inequality. Adv. Oper. Theory 7, 55 (2022)
Yang, J., Lu, L., Chen, Z.: Some singular value inequalities related to linear maps. Filomat 34, 3705–3709 (2020)
Yang, J., Lu, L., Chen, Z.P.: A note on a conjectured singular value inequality related to a linear map. Oper. Matrices 14(1), 265–269 (2020)
Zuo, H., Li, Y.: Some refinements of Young type inequalities. J. Math. Inequal. 16(3), 1169–1178 (2022)
Zeng, R.: Young’s inequality in compact operators. The case of equality. J. Inequal. Pure Appl. Math. Paper No. 110 (2005). Electronic only. http://eudml.org/doc/126707
