An extended instrument variable approach for nonparametric LPV model identification

IFAC-PapersOnLine - Tập 51 - Trang 81-86 - 2018
Marcelo M.L. Lima1, Rodrigo A. Romano1, Paulo Lopes dos Santos2, Felipe Pait3
1Escola de Engenharia do Instituto Mauá de Tecnologia, Praça Mauá n.1 09580-900, São Caetano do Sul, Brazil
2Faculdade de Engenharia da Universidade do Porto, Portugal, Rua do Dr Roberto Frias s/n 4200–465 Porto, Portugal
3Escola Politécnica da Universidade de São Paulo, Av Luciano Gualberto n.380 05508–010, São Paulo, Brazil

Tài liệu tham khảo

Alkhoury, 2017, Comparing global input-output behavior of frozen-equivalent LPV state-space models, IFAC–PapersOnLine, 50, 9766, 10.1016/j.ifacol.2017.08.2182 dos Santos, 2012, Linear parameter-varying system identification: New developments and trends dos Santos, P.L., Romano, R.A., Perdicoúlis, T.P.A., Rivera, D.E., and Ramos, J.A. (2017). LPV system identification using the matchable observable linear identification approach. 56th IEEE Annual Conference on Decision and Control (CDC), 56, 4626–4631. Guidorzi, 2003, Minimal representations of MIMO time–varying systems and realization of cyclostation-ary models, Automatica, 39, 1903, 10.1016/S0005-1098(03)00195-X Laurain, 2010, Refined instrumental variable methods for identification of LPV Box–Jenkins models, Automatica, 46, 959, 10.1016/j.automatica.2010.02.026 Laurain, 2015, An instrumental least squares support vector machine for nonlinear system identification, Automatica, 54, 340, 10.1016/j.automatica.2015.02.017 Laurain, V., Tóth, R., Zheng, W.X., and Gilson, M. (2012). Non-parametric identification of LPV models under general noise conditions: An LS-SVM based approach. In Proceedings of the 16th IFAC Symposium on System Identification, 1761– 1766. Brussels, Belgium. Laurain, V., Zheng, W.X., and Tóth, R. (2011). Introducing instrumental variables in the LS-SVM based identification framework. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 3198–3203. Ljung, 1999 Morse, 1994, MIMO design models and internal regulators for cyclicly switched parameter–adaptive control systems, IEEE Transactions on Automatic Control, 39, 1809, 10.1109/9.317097 Pait, F.M. (2018). The Barycenter Method for Direct Optimization. arXiv e–prints. URL https://arxiv.org/abs/1801.10533. Piga, 2015, LPV system identification under noise corrupted scheduling and output signal observations, Automatica, 53, 329, 10.1016/j.automatica.2015.01.018 Rizvi, 2018, State–space LPV model identification using kernelized machine learning, Automatica, 88, 38, 10.1016/j.automatica.2017.11.004 Rizvi, S.Z., Mohammadpour, J., Tóth, R., and Meskin, N. (2015a). An IV-SVM-based approach for identification of state-space LPV models under generic noise conditions. In Proceedings of the 54th IEEE Annual Conference on Decision and Control (CDC), 7380–7385. Rizvi, 2015, A kernel–based approach to MIMO LPV state–space identification and application to a nonlinear process system, IFAC–PapersOnLine, 48, 85, 10.1016/j.ifacol.2015.11.118 Romano, R.A., dos Santos, P.L., Pait, F., Perdicoúlis, T.P.A., and Ramos, J.A. (2016). Machine learning barycenter approach to identifying LPV state-space models. IEEE American Control Conference (ACC), 6351–6356. Romano, 2017, Matchable-observable linear models and direct filter tuning: An approach to multivariable identification, IEEE Transactions on Automatic Control, 62, 2180, 10.1109/TAC.2016.2602891 Schulz, E., Cox, P.B., Werner, H., and Tóth, R. (2017). Comparison of IO structure assisted state–space identification with subspace methods for linear parameter–varying systems. In Proceedings of the 56th IEEE Conference on Decision and Control (CDC), 3575–3581. Melbourne, Australia. Shafai, 1986, Minimal-order observer designs for linear time–varying multivariable systems, IEEE Transactions on Automatic Control, AC–31, 757, 10.1109/TAC.1986.1104392 Tóth, 2010 Tóth, R., Felici, F., Heuberger, P.S.C., and den Hof, P.M.J.V. (2007). Discrete time LPV I/O and state space representations, differences of behavior and pitfalls of interpolation. IEEE European Control Conference (ECC), 5418–5425. Tóth, 2012, On the state-space realization of LPV input-output models: Practical approaches, IEEE Transactions on Control Systems technology, 20, 139 Tóth, R., Lizel, C., Enqvist, M., Heuberger, P.S.C., and den Hof, P.M.J.V. (2009). Order and structural dependence selection of LPV-ARX models using a nonnegative garrote approach. In Proceedings of the 49th IEEE Conference on Decision and Control, 7406–7411. Shangai, China. Vapnik, 1998 Vizer, 2015, Linear fractional LPV model identification from local experiments using an H∞-based global approach, 189