An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia*

Journal of Metamorphic Geology - Tập 14 Số 1 - Trang 29-47 - 1996
Ian S. Williams1, I. S. Buick2, Ian Cartwright3
1Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia (email: [email protected])
2School of Earth Sciences, La Trobe University, Bundoora, Victoria, 3083, Australia
3Dept. of Earth Sciences, Monash Univ., Clayton, Victoria, 3168, Australia

Tóm tắt

ABSTRACT The products of metamorphic fluid flow are preserved in zones within the marbles and metamorphosed semipelites of the Upper Calcsilicate Unit in the granulite portion of the Late Palaeoproterozoic Reynolds Range Group, northern Arunta Block, central Australia. The zones of retrogression, characterized by minerals such as wollastonite, grossular and clinohumite, local resetting of oxygen isotopic compositions and local major element metasomatism, were channelways for water‐rich fluids derived from granulite facies metapelites. U–Th–Pb isotopic ages measured by the SHRIMP ion microprobe on zircon and monazite from a granulite facies semipelite, an early semiconcordant aluminous quartz‐rich fluid‐flow segregation and a late discordant quartz‐rich segregation record some of the extended thermal history of the area. Zircon cores from the semipelite show its likely protolith to be an igneous rock 1812 ± 11 Ma old, itself derived from a source containing zircon as old as 2.2 Ga. Low‐Th/U overgrowths on the zircon grew during granulite facies metamorphism at 1594 ± 6 Ma. Monazite cooled to its blocking temperature at 1576 ± 8 Ma. Zircon cores from the semiconcordant segregation are dominantly >2.3 Ga old, indicating that the source of the fluids was not the particular metamorphosed semipelite studied. Two generations of low‐Th/U overgrowths on the zircon give indistinguishable ages for the older and younger of 1589 ± 8 and 1582 ± 8 Ma, respectively. The monazite age is the same, 1576 ± 12 Ma. Zircon from the late discordant segregation gave 1568 ± 4 Ma. Fluid flow occurred for at least 18 ± 3 (σ) Ma and ended 26 ± 3 (σ) Ma after the peak of metamorphism, suggesting a very slow cooling rate of ∼3°C Ma–1. The last regional high‐grade metamorphism in the Reynolds Range occurred at ∼1.6 Ga, not ∼1.78 Ga as previously thought. The high‐grade event at ∼1.78 Ga is a separate event that affected only the basement to the Reynolds Range Group.

Từ khóa


Tài liệu tham khảo

10.1007/BF00373680

10.1016/0301-9268(90)90009-F

10.1007/BF00371371

10.1080/08120099208728012

Black L. P., 1983, Rb–Sr geochronology of Proterozoic events in the Arunta Inlier, central Australia, Bureau of Mineral Resources Journal of Australian Geology and Geophysics, 8, 129

10.2475/ajs.294.1.1

Buick I. S., 1994, Mineralogical Magazine, 130

10.1029/94JB01147

10.1111/j.1525-1314.1988.tb00409.x

10.1144/gsjgs.151.4.0583

10.1111/j.1525-1314.1995.tb00228.x

Cartwright I. Buick I. S.&Vry J. K. 1995.Polyphase metamorphic fluid flow in the Lower Calcsilicate Unit Reynolds Range central Australia.Precambrian Research in press.

10.1007/BF00310607

Claoué‐Long J. C. Compston W. Roberts J.&Fanning C. M. 1995.Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and40Ar/39Ar analysis.SEPM Special Publication in press.

10.1111/j.1525-1314.1993.tb00141.x

10.1016/0191-8141(91)90075-T

10.1016/0301-9268(94)00067-2

10.1130/0091-7613(1993)021<0953:HWEIIC>2.3.CO;2

10.1016/0301-9268(94)00056-W

10.1016/0012-821X(86)90020-8

10.1029/JB089iS02p0B525

Cooper J. A., 1988, Rate of Arunta Inlier evolution at the eastern margin of the Entia dome, central Australia, Precambrian Research, 4041, 251

10.1016/0024-4937(81)90037-2

10.1016/0016-7037(92)90397-2

10.1080/08120099008727941

10.1111/j.1525-1314.1991.tb00514.x

10.1111/j.1525-1314.1991.tb00553.x

10.1016/0191-8141(90)90080-I

10.1007/BF00371145

10.1111/j.1365-2818.1991.tb03197.x

10.1029/94JB01147

10.1130/0091-7613(1991)019<0211:FFMRAM>2.3.CO;2

10.1016/0009-2541(93)90244-D

10.1016/0191-8141(92)90159-T

10.1130/0091-7613(1992)020<0649:HWEIIC>2.3.CO;2

10.1130/0091-7613(1993)021<0955:SAWCCI>2.3.CO;2

10.1111/j.1525-1314.1994.tb00042.x

10.1180/minmag.1994.58A.1.196

Hensen B. J., 1984, Fluid evolution in granulites from the Arunta Block, central Australia, Geological Society of Australia Abstracts Volume, 12, 235

10.1180/minmag.1984.048.349.05

10.1086/628165

10.1111/j.1365-2818.1993.tb03379.x

10.1086/648243

10.1130/0091-7613(1993)021<0607:PATOOM>2.3.CO;2

10.1016/0016-7037(94)90521-5

10.1139/e90-152

10.1111/j.1525-1314.1991.tb00527.x

10.1080/08120098408729305

Smith H. A., 1994, 204Pb tracer diffusion in monazite and implications for U–Pb closer temperatures, EOS, 75, 692

Sommerauer J., 1974, Trace element distribution patterns and the mineralogical stability of zircon ‐ an application for combined electron microprobe techniques, Proceedings of the Electron Microscopy Society of South Africa, 4, 71

10.1016/0012-821X(77)90060-7

10.1080/08120098408729304

10.1093/petrology/31.3.555

10.1016/0012-821X(92)90155-O

Reenen D. D., 1986, Hydration of cordierite and hypersthene and a description of the retrograde orthoamphibole isograd, American Mineralogist, 71, 900

10.1007/BF00306410

10.1007/BF00310691

10.1007/BF00371240

10.1007/BF00371438

10.1016/0301-9268(94)00055-V

10.1130/0091-7613(1990)018<0626:IMDOZF>2.3.CO;2

10.1029/91TC00168

10.1016/0016-7037(93)90042-U

10.1016/0301-9268(94)00054-U