An extended SST kω framework for the RANS simulation of the neutral Atmospheric Boundary Layer

Environmental Modelling & Software - Tập 160 - Trang 105583 - 2023
Marco Bellegoni1,2,3, Léo Cotteleer2,3, Sampath Kumar Raghunathan Srikumar4, Gabriele Mosca4, Alessandro Gambale4, Leonardo Tognotti1, Chiara Galletti1, Alessandro Parente2,3
1Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
2Ecole Polytechnique de Bruxelles, Départment d’Aéro-Thermo-Mécanique, Université libre de Bruxelles, Brussels, Belgium
3BRITE - Brussels Institute for Thermal-fluid systems and clean Energy, Brussels, Belgium
4BuildWind SPRL, Rue Bara 175, 1070 Brussels, Belgium

Tài liệu tham khảo

An, 2018, An improved SST k−ω model for pollutant dispersion simulations within an isothermal boundary layer, J. Wind Eng. Ind. Aerodyn., 179, 369, 10.1016/j.jweia.2018.06.010 Bellegoni, 2021, CFD analysis of the influence of a perimeter wall on the natural gas dispersion from an LNG pool, Process Saf. Environ. Prot., 148, 751, 10.1016/j.psep.2021.01.048 Bezyk, 2021, Evaluation of the CALPUFF model performance for the estimation of the urban ecosystem CO2 flux, Atmospheric Pollut. Res., 12, 260, 10.1016/j.apr.2020.12.013 Blocken, 2012, CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven university campus, Environ. Model. Softw., 30, 15, 10.1016/j.envsoft.2011.11.009 Blocken, 2007, CFD simulation of the atmospheric boundary layer: wall function problems, Atmos. Environ., 10.1016/j.atmosenv.2006.08.019 Blocken, 2016, Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment, Build. Environ., 100, 50, 10.1016/j.buildenv.2016.02.004 Chen, 2021, Integrated impacts of building height and upstream building on pedestrian comfort around ideal lift-up buildings in a weak wind environment, Build. Environ., 200, 10.1016/j.buildenv.2021.107963 City of London, 2019 Defraeye, 2010, A methodology to assess the influence of local wind conditions and building orientation on the convective heat transfer at building surfaces, Environ. Model. Softw., 25, 1813, 10.1016/j.envsoft.2010.06.002 Du, 2021, Efficient and high-resolution simulation of pollutant dispersion in complex urban environments by island-based recurrence CFD, Environ. Model. Softw., 145, 10.1016/j.envsoft.2021.105172 Du, 2018, Modelling of pedestrian level wind environment on a high-quality mesh: A case study for the HKPolyU campus, Environ. Model. Softw., 103, 105, 10.1016/j.envsoft.2018.02.016 Ehrhard, 2000, On a new nonlinear turbulence model for simulating flows around building-shaped structures, J. Wind Eng. Ind. Aerodyn., 88, 91, 10.1016/S0167-6105(00)00026-X Environmental Protection Agency, ., 2022. https://www.epa.gov/environmental-topics/air-topics. (Accessed 20 June 2022). European Environmental Agency, ., 2022. Air pollution, https://www.eea.europa.eu/themes/air. (Accessed 20 June 2022). Franke, 2007, 1 Gorlé, 2009, CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer, Atmos. Environ., 43, 673, 10.1016/j.atmosenv.2008.09.060 Isakov, 2017, A web-based screening tool for near-port air quality assessments, Environ. Model. Softw., 98, 21, 10.1016/j.envsoft.2017.09.004 Jones, 1972, The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer, 15, 301, 10.1016/0017-9310(72)90076-2 Lateb, 2016, On the use of numerical modelling for near-field pollutant dispersion in urban environments - A review, Environ. Pollut., 208, 271, 10.1016/j.envpol.2015.07.039 Lauriks, 2021, Application of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban street, Atmos. Environ., 246, 10.1016/j.atmosenv.2020.118127 Leitl, 2010 Longo, 2017, Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings, J. Wind Eng. Ind. Aerodyn., 167, 160, 10.1016/j.jweia.2017.04.015 Longo, 2020, Impact of urban environment on Savonius wind turbine performance: A numerical perspective, Renew. Energy, 156, 407, 10.1016/j.renene.2020.03.101 Menter, 1994, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598, 10.2514/3.12149 Parente, 2011, A comprehensive modelling approach for the neutral atmospheric boundary layer: Consistent inflow conditions, wall function and turbulence model, Bound.-Lay. Meteorol., 140, 411, 10.1007/s10546-011-9621-5 Parente, 2011, Improved k-ϵ model and wall function formulation for the RANS simulation of ABL flows, J. Wind Eng. Ind. Aerodyn., 10.1016/j.jweia.2010.12.017 Pontiggia, 2009, Hazardous gas dispersion: A CFD model accounting for atmospheric stability classes, J. Hard Mater., 171, 739, 10.1016/j.jhazmat.2009.06.064 Richards, 1993, Appropriate boundary conditions for computational wind engineering models using the K-ϵ turbulence model, 145 Roache, 1998 Shekarrizfard, 2017, Modelling the spatio-temporal distribution of ambient nitrogen dioxide and investigating the effects of public transit policies on population exposure, Environ. Model. Softw., 91, 186, 10.1016/j.envsoft.2017.02.007 Shen, 2020, Recent application of Computational Fluid Dynamics (CFD) in process safety and loss prevention: A review, J. Loss Prev. Process Ind., 67 Tominaga, 2008, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerodyn., 96, 1749, 10.1016/j.jweia.2008.02.058 WHO, 2016, 121 Wright, 2003, Non-linear k–ϵ turbulence model results for flow over a building at full-scale, Appl. Math. Model., 27, 1013, 10.1016/S0307-904X(03)00123-9 Yang, 2009, New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering, J. Wind Eng. Ind. Aerodyn., 10.1016/j.jweia.2008.12.001 Yu, 2016, Validation and optimization of SST k-ω turbulence model for pollutant dispersion within a building array, Atmos. Environ., 145, 225, 10.1016/j.atmosenv.2016.09.043