An explicit expression for singular integral operators with non-necessarily doubling measures

Collectanea Mathematica - Tập 63 - Trang 217-242 - 2011
P. S. Viola1, B. E. Viviani2
1NUCOMPA (Núcleo Consolidado de Matemática Pura y Aplicada), Fac. Cs. Exactas, UNICEN, Tandil, Argentina
2IMAL (Instituto de Matemática Aplicada del Litoral), CONICET-UNL, Santa Fe, Argentina

Tóm tắt

We study singular integral operators with Hilbert-valued kernels in the setting of R n with non-necessarily doubling measures. We obtain an explicit formula for these operators following a similar approach as in Macías et al. (Adv Math 93:25–60, 1992). By using this formula and a result due to Krein we get a T1-theorem in this context. Finally, we develop a theory for antisymmetric kernels and we apply the results to the oscillation operators related to the Riesz transform.

Tài liệu tham khảo

Bourgain J.: Pointwise ergodic theorems for arithmetic sets. Inst. Hautes Études Sci. Publ. Math. 69, 5–45 (1989) Bramanti M.: Singular integrals in nonhomogeneous spaces: L 2 and L p continuity from Hölder estimates. Rev. Mat. Iberoam. 26, 347–366 (2010) Benedek A., Calderón A.-P., Panzone R.: Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. USA 48, 356–365 (1962) Campbell J.T., Jones R.L., Reinhold K., Wierdl M.: Oscillation and variation for the Hilbert transform. Duke Math. J. 105, 59–83 (2000) Campbell J.T., Jones R.L., Reinhold K., Wierdl M.: Oscillation and variation for singular integrals in higher dimensions. Trans. Am. Math. Soc. 355, 2115–2137 (2003) Calderon A.P., Zygmund A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952) David G., Journé J.-L.: A boundedness criterion for generalized Calderón-Zygmund operators. Ann. Math. 120, 371–397 (1984) David G., Journé J.-L., Semmes S.: Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoam. 1, 1–56 (1985) Diestel, J., Uhl, J.J. Jr.: Vector meaures. In: Mathematical Surveys, vol. 15. American Mathematical Society (1977) Gohberg, I., Krupnik, N.: Einführung in die Theorie der eindimensionalen singulären Integraloperatoren. Birkhäuser (1979) Hytönen T.: An operator valued Tb theorem. J. Funct. Anal. 234, 420–463 (2006) Hytönen, T.: The vector-valued non-homogeneous Tb theorem. Arxiv:0809.3097v3 (2009) Hytönen T., Weis L.: A T1 theorem for integral transformation with operator-valued kernel. Journal für die reine und angewandte Mathematik (Crelles’s Journal) 599, 155–200 (2006) Jones R.: Ergodic theory and connections with analysis and probability. N.Y. J. Math. 3A, 31–67 (1997) Jones R.L., Kaufman R., Rosenblatt J., Wierdl M.: Oscillation in ergodic theory. Ergod. Theory Dyn. Syst. 18, 889–935 (1998) Jones R., Ostrovski I., Rosenblatt J.: Spaces functions in ergodic theory. Ergod. Theory Dyn. Syst. 16, 267–305 (1996) Macías R.A., Segovia C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257– (1976) Macías R.A., Segovia C., Torrea J.L.: Singular integral operators with non-necessarily bounded kernels on spaces of homogeneous type. Adv. Math. 93, 25– (1992) Melnikov M.S., Verdera J.: A geometric proof of the L 2 boundedness of the Cauchy integral on Lipschitz graphs. Int. Math. Res. Not. 7, 325–331 (1995) Nazarov F., Treil S., Volberg A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 15, 703–726 (1997) Rubio de Francia J.L., Ruiz F.J., Torrea J.L.: Calderón-Zygmund theory for operator-valued kernels. Adv. Math. 62, 7–48 (1986) Rubio de Francia J.L., Torrea J.L.: Vector extensions of operators in L p spaces. Pac. J. Math. 105, 227–235 (1983) Tolsa X.: Littlewood-Paley theory and the T(1) theorem with non-doubling measures. Adv. Math. 164, 57–116 (2001) Tolsa X.: A T(1) theorem for non-doubling measures with atoms. Proc. Lond. Math. Soc. 82, 195–228 (2001) Tolsa X.: L 2-boundedness of the Cauchy integral operator for continuous measures. Duke Math. J. 98, 269–304 (1999) Verdera J.: On the T(1)-theorem for the Cauchy integral. Trans. Am. Math. Soc. 299, 581–599 (1987) Wittmann R.: Application of a Theorem of M.G. Krein to singular integrals. Trans. Am. Math. Soc. 299, 581–599 (1987)