An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets

Nature Biomedical Engineering - Tập 3 Số 3 - Trang 173-182
Hyunkwang Lee1, Sehyo Yune1, Mohammad Mansouri1, Myeongchan Kim1, Shahein Tajmir1, Claude Emmanuel Guerrier1, Sarah A. Ebert1, Stuart R. Pomerantz1, Javier M. Romero1, Shahmir Kamalian1, Ramón González1, Michael H. Lev1, Synho Do1
1Department of Radiology, Massachusetts General Hospital, Boston, MA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016).

Rajpurkar, P. et al. Chexnet: Radiologist-level pneumonia detection on chest X-rays with deep learning. Preprint at https://arxiv.org/abs/1711.05225 (2017).

Castelvecchi, D. Can we open the black box of AI? Nature 538, 20–23 (2016).

Clinical and Patient Decision Support Software. Draft Guidance for Industry and Food and Drug Administration Staff (US FDA, 2017).

Deng, J. et al. Imagenet: a large-scale hierarchical image database. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).

Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. Preprint at https://arxiv.org/abs/1409.1556 (2014).

He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2818–2826 (IEEE, 2016).

Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, inception-ResNet and the impact of residual connections on learning. In Proc. 31st AAAI Conference on Artificial Intelligence 4278–4284 (AAAI, 2017).

Wang, X. et al. ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 3462–3471 (IEEE, 2017).

Sozykin, K., Khan, A. M., Protasov, S. & Hussain, R. Multi-label class-imbalanced action recognition in hockey videos via 3D convolutional neural networks. Preprint at https://arxiv.org/abs/1709.01421 (2017).

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discriminative localization. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2921–2929 (IEEE, 2016).

Selvaraju, R. R. et al. Grad-cam: visual explanations from deep networks via gradient-based localization. Preprint at https://arxiv.org/abs/1610.02391v3 (2016).

Lazer, D., Kennedy, R., King, G. & Vespignani, A. The parable of Google Flu: traps in big data analysis. Science 343, 1203–1205 (2014).

Chilamkurthy, S. et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet https://doi.org/10.1016/S0140-6736(18)31645-3 (2018).

Grewal, M., Srivastava, M. M., Kumar, P. & Varadarajan, S. RADnet: Radiologist level accuracy using deep learning for hemorrhage detection in CT scans. In IEEE International Symposium on Biomedical Imaging 281–284 (IEEE, 2018).

Desai, V., Flanders, A. E. & Lakhani, P. Application of deep learning in neuroradiology: automated detection of basal ganglia hemorrhage using 2D-convolutional neural networks. Preprint at https://arxiv.org/abs/1710.03823 (2017).

Phong, T. D. et al. Brain hemorrhage diagnosis by using deep learning. In Proc. 2017 International Conference on Machine Learning and Soft Computing 34–39 (ACM, 2017).

Prevedello, L. M. et al. Automated critical test Findings identification and online notification system using artificial ntelligence in imaging. Radiology 285, 923–931 (2017).

Arbabshirani, M. R. et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. npj Digit. Med. 1, 9 (2018).

Rubin, J. et al. Large scale automated reading of frontal and lateral chest X-rays using dual convolutional neural networks. Preprint at https://arxiv.org/abs/1804.07839 (2018).

Lakhani, P. & Sundaram, B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017).

Domingos, P. A few useful things to know about machine learning. Commun. ACM 55, 78–87 (2012).

Poplin, R. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158 (2018).

Brinjikji, W. et al. Inter- and intraobserver agreement in CT characterization of nonaneurysmal perimesencephalic subarachnoid hemorrhage. AJNR Am. J. Neuroradiol. 31, 1103–1105 (2010).

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Object detectors emerge in deep scene cnns. Preprint at https://arxiv.org/abs/1412.6856 (2014).

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding neural networks through deep visualization. Preprint at https://arxiv.org/abs/1506.06579 (2015).

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).

Tsoumakas, G. & Katakis, I. Multi-label classification: an overview. Int. J. Data Warehousing Mining 3, 1–13 (2007).

Russakovsky, O. et al. Imagenet large scale visual recognition challenge. Int. J. Comp. Vision 115, 211–252 (2015).

Chollet, F. et al. Keras (2015); http://keras.io

Lin, M., Chen, Q. & Yan, S. Network in network. Preprint at https://arxiv.org/abs/1312.4400 (2013).

Nesterov, Y. A method of solving the convex programming problem with convergence rate O(1/k 2). Dokl. Akad. Nauk USSR 269, 543–547 (1983).

Abadi, M. et al. Tensorflow: a system for large-scale machine learning. Proc. 12th USENIX Symposium on Operating Systems Design and Implementation 16, 265–283 (2016).

King, G. & Zeng, L. Logistic regression in rare events data. Political Anal. 9, 137–163 (2001).

Kimpe, T. & Tuytschaever, T. Increasing the number of gray shades in medical display systems—how much is enough? J. Digit. Imaging 20, 422–432 (2007).

Xue, Z., Antani, S., Long, L. R., Demner-Fushman, D. & Thoma, G. R. Window classification of brain CT images in biomedical articles. In AMIA Annual Symposium Proceedings 1023 (American Medical Informatics Association, 2012).

Turner, P. & Holdsworth, G. CT stroke window settings: an unfortunate misleading misnomer? Br. J. Radiol. 84, 1061–1066 (2011).

Ju, C., Bibaut, A. & van der Laan, A. The relative performance of ensemble methods with deep convolutional neural networks for image classification. J. Appl. Stat. 45, 2800–2818 (2018).

Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proc. 27th International Conference on Machine Learning 807–814 (ICML, 2010).

Davis, J. & Goadrich, M. The relationship between precision-recall and ROC curves. Proc. 23rd International Conference on Machine Learning 233–240 (ACM, 2006).