An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chandrasekara M, Sureshb S, Senthilkumara T. Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids, a review. Renew Sustain Energy Rev. 2012;16:3917–38.
Barbés B, Páramo R, Blanco E, Pastoriza-Gallego MJ, Piñeiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;11:1615–25.
Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12:1015–31.
Hemmat Esfe M, Saedodin S, Mahian O, Wongwises W. Thermal conductivity of Al2O3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports. J Therm Anal Calorim. 2014;117:675–81.
Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.
Hwang YJ, Ahn YC, Shin HS, Lee CG, Kim GT, Park HS, et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys. 2006;6:1068.
Gowda R, Sun H, Wang P, Charmchi M, Gao F, Gu Z, et al. Effects of particle surface charge, species, concentration, and dispersion method on the thermal conductivity of nanofluids. Adv Mech Eng. 2010;2010:1–10.
Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises W. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118(1):287–294. doi: 10.1007/s10973-014-3771-x.
Anoop KB, Sundararajan T, Das SK. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf. 2009;52:2189–95.
Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52:4675–82.
Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106:014304.
Cherkasova AS, Shan JW. Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions. ASME J Heat Transf. 2008;130:082406.
Liu MS, Lin MCC, Huang IT, Wang CC. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf. 2005;32:1202–10.
Yu W, Xie H, Chen W. Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J Appl Phys. 2010;107:094317.
Gallego MJP, Lugo L, Legido JL, Pineiro MM. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanoscale Res Lett. 2011;6:1–11.
Syam Sundar L, Singh Manoj K, Sousa Antonio C M. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transf. 2013;44:7–14.
Syam Sundar L, Singh MK, Sousa ACM. Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Int Commun Heat Mass Transf. 2013;49:17–24.
Oh DW, Jain A, Eaton JK, Goodson KE, Lee JS. Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3× method. Int J Heat Fluid Flow. 2008;29:1456–61.
Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13:474–80.
Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121:280–9.
Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567–74.
Ghanbarpour M, Bitaraf Haghigi E, Khodabandeh R. Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid. Exp Therm Fluid Sci. 2014;53:227–35.
Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng. 2010;30:2213–8.
Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Heat transfer characteristics and pressure drop of low concentrations of COOH-functionalized DWCNTs/water nanofluid in turbulent flow. Int J Heat Mass Transf. 2014;73:186–194.
Hemmat Esfe M, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Therm Fluid Sci. 2014;52:68–78.
Nasiri A, Shariaty-Niasar M, Rashidi A, Amrollahi A, Khodafarin R. Effect of dispersion method on thermal conductivity and stability of nanofluid. Exp Therm Fluid Sci. 2011;35:717–23.
Yu W, Xie H, Li Y, Chen L. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology. 2011;9:187–91.
Gj Lee. KyuKim C, Lee MK, KyuRhee C, Kim S, Kim C. Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method. Thermochim Acta. 2012;542:24–7.
Hemmat Esfe M, Saedodin S. An experimental investigation and new correlations of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Exp Therm Fluid Sci. 2014;55:1–5.
Gavili A, Zabihi F, Isfahani TD, Sabbaghzadeh J. The thermal conductivity of water base ferrofluids under magnetic field. Exp Therm Fluid Sci. 2014;41:94–8.
Yasar RM, Mathias A, Lars F, Bernd W. Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater Sci Eng. 2007;444:227–35.
Zhu H, Zhang C, Liu S, Tang Y, Yin Y. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett. 2006;89:23123.
Abareshi M, Goharshadi E, Zebarjad S, Fadafan HK, Youssefi A. Fabrication characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater. 2010;322:3895–901.
Fertman VE, Golovicher LE, Matusevich NP. Thermal conductivity of magnetite magnetic fluids. J Magn Magn Mater. 1987;65:211–4.
Parekh K, Lee HS. Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J Appl Phys. 2010;107:09A310.
Yu W, Xie H, Chen L, Li Y. Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf A. 2010;355:109–13.
Cahill DG. Thermal conductivity measurement from 30 to 750 K: the 3u method. Rev Sci Instrum. 1990;61:802–8.
Kurt H, Kayfeci M. Prediction of thermal conductivity of ethylene glycolwater solutions by using artificial neural networks. Appl Energy. 2009;86:2244–8.
Challoner AR, Powell RW. Thermal conductivities of liquids: new determinations for seven liquids and appraisal of existing values. Proc R Soc Lond A. 1956;238:90–106.
Paul G, Chopkar M. Manna IA, Das PK: techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sustain Energy Rev. 2010;14:1913–24.
Hamilton R, Crosser O. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam. 1962;3:187–91.
Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5:167–71.