Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một nghiên cứu thực nghiệm về hiệu suất làm mát của nanofluid magnetite-nước trong ống xoắn tiếp xúc với trường từ tính xoay
Tóm tắt
Trong nghiên cứu thực nghiệm này, hiện tượng đối lưu cưỡng bức dạng lớp của nanofluid nước-magnetite (NF) trong một ống xoắn ngang (TT) được khảo sát dưới tác động của trường từ tính (MF) quay. Các kết quả được so sánh với các ống thông thường (PT). Ảnh hưởng của nồng độ nanoadditive (\varphi), số Reynolds (Re), bước xoắn (P) và cách sắp xếp MF đến quá trình truyền nhiệt, hệ số ma sát và các đặc tính nhiệt-hydraulics tổng thể của NF được đánh giá. MF bao gồm hai nam châm quay quanh ống. Đối với mỗi nam châm, ba chế độ quay là quay theo chiều kim đồng hồ, quay ngược chiều kim đồng hồ và không quay được xem xét. Các kết quả cho thấy việc kết hợp sử dụng TT và MF quay mang lại sự tăng cường các đặc tính nhiệt-hydraulics tổng thể của NF nước-magnetite. Ngoài ra, cũng cho thấy rằng các đặc tính nhiệt-hydraulics tổng thể của NF tăng lên khi nâng cao nồng độ \varphi, trong khi lại giảm khi tăng P và Re. Hơn nữa, kết quả cho thấy các đặc tính nhiệt-hydraulics tốt nhất của NF nước-magnetite thuộc về trường hợp \varphi = 2%, Re = 500 và P = 10 mm trong điều kiện có trường từ tính quay, với nam châm đầu tiên quay theo chiều kim đồng hồ và nam châm thứ hai quay ngược chiều kim đồng hồ.
Từ khóa
#nanofluid #експеримент nghiên cứu #đối lưu cưỡng bức #trường từ tính quay #hãm #nước #magnetiteTài liệu tham khảo
Saleh MM, Al-Dadah R, Mahmoud S, Elsayed E, El-Samni O. Wire fin heat exchanger using aluminium fumarate for adsorption heat pumps. Appl Therm Eng. 2020;164:114426.
Zhao Z, Zhang Y, Chen X, Ma X, Yang S, Li S. Experimental and numerical investigation of thermal-hydraulic efficiency of supercritical nitrogen in airfoil fin printed circuit heat exchanger. Appl Therm Eng. 2020;168:114829.
Bosnjakovic M, Muhic S, Cikic A. Experimental testing of the heat exchanger with star-shaped fins. Int J Heat Mass Transf. 2020;149:119190.
Xiong Q, Jafaryar M, Divsalar A, Sheikholeslami M, Shafee A, Vo DD, Khan MH, Tlili I, Li Z. Macroscopic simulation of NF turbulent flow due to compound turbulator in a pipe. Chem Phys. 2019;527:110475.
Nalavade SP, Prabhune CL, Sane NK. Effect of novel flow divider type turbulators on fluid flow and heat transfer. Therm Sci Eng Prog. 2019;9:322–31.
Ilbas M, Karyeyen S. Turbulent diffusion flames of a low-calorific value syngas under varying turbulator angles. Energy. 2017;138:383–93.
Malmir-Chegini Y, Amanifard N. Heat transfer enhancement inside semi-insulated horizontal pipe by controlling the secondary flow of oil-based ferro-fluid in the presence of non-uniform magnetic field: a general correlation for the Nu. Appl Therm Eng. 2019;159:113839.
Bezaatpour M, Goharkhah M. Convective heat transfer enhancement in a double pipe mini heat exchanger by magnetic field induced swirling flow. Appl Therm Eng. 2020;167:114801.
Bezaatpour M, Rostamzadeh H. Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field. Appl Therm Eng. 2020;164:114462.
Mekheimer KS, Komy SR, Abdelsalam SI. Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel. Chin Phys B. 2013;22:124702.
Elmaboud YA, Abdelsalam SI, Mekheimer K, Vafai K. Electromagnetic flow for two-layer immiscible fluids. Int J Eng Sci Technol. 2019;22:237–48.
Eldesoky IM, Abselsalam SI, El-Askary WA, Ahmed MM. Concurrent development of thermal energy with magnetic field on a particle-fluid suspension through a porous conduit. BioNanoScience. 2019;9:186–202.
Abdelsalam SI, Vafai K. Combined effects of magnetic field and rheological properties on the peristaltic flow of a compressible fluid in a microfluidic channel. Eur J Mech B Fluids. 2017;65:398–411.
Abdelsalam SI, Bhatti MM. The impact of impinging TiO2 nanoparticles in Prandtl nanofluid along with endoscopic and variable magnetic field effects on peristaltic blood flow. Multidiscip Model Mater Struct. 2018;14:530–48.
Eldesoky IM, Abdelsalam SI, El-Askary WA, El-Refaey AM, Ahmed MM. Joint effect of magnetic field and heat transfer on particulate fluid suspension in a catheterized wavy tube. BioNanoScience. 2019;9:723–39.
Tang J, Hu X, Yu Y. Electric field effect on the heat transfer enhancement in a vertical rectangular microgrooves heat sink. Int J Therm Sci. 2020;150:106222.
Bao YY, Huang JH, Chen YJ, Liu ZH. Natural convection heat transfer of NF in a cavity under an inhomogeneous electric field. Int J Heat Mass Transf. 2019;131:341–5.
Zonouzi SA, Aminfar H, Mohammadpourfard M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Appl Therm Eng. 2019;151:11–25.
Soleimani P, Khoshvaght-Aliabadi M, Rashidi H, Bahmanpour H. Efficiency enhancement of water bath heater at natural gas city gate station using twisted tubes. Chin J Chem Eng (in press).
Samruaisin P, Kunlabud S, Kunnarak K, Chuwattanakul V, Eiamsa-ard S. Intensification of convective heat transfer and heat exchanger efficiency by the combined influence of a twisted tube and twisted tape. Case Stud Therm Eng. 2019;14:100489.
Abdelsalam SI, Bhatti MM. Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms. Appl Math Mech. 2020;41:711–24.
Sohail M, Naz R, Abdelsalam SI. On the onset of entropy generation for a nanofluid with thermal radiation and gyrotactic microorganisms through 3D flows. Phys Scr. 2020;95:045206.
Abdelsalam SI, Vafai K. Particulate suspension effect on peristaltically induced unsteady pulsatile flow in a narrow artery: blood flow model. Math Biosci. 2017;283:91–105.
Rostami S, Shahsavar A, Kefayati GR, ShahsavarGoldanlou A. Energy and exergy analysis of using turbulator in a parabolic trough solar collector filled with mesoporous silica modified with copper nanoparticles hybrid nanofluid. Energies. 2020;13:2946.
Li Z, Shahsavar A, Niazi K, Al-Rashed AAAA, Rostami S. Numerical assessment on the hydrothermal behavior and irreversibility of MgO–Ag/water hybrid nanofluid flow through a sinusoidal hairpin heat-exchanger. Int Commun Heat Mass Transf. 2020;115:104628.
Shahsavar A, Khanmohammadi S, Afrand M, Shahsavar A, Rostami S. On evaluation of magnetic field effect on the formation of nanoparticles clusters inside aqueous magnetite nanofluid: an experimental study and comprehensive modeling. J Mol Liq. 2020;312:113378.
Zheng Y, Shahsavar A, Afrand M. Sonication time efficacy on Fe3O4-liquid paraffin magnetic nanofluid thermal conductivity: an experimental evaluation. Ultrason Sonochem. 2020;64:105004.
Geng Y, Al-Rashed AAAA, Mahmoudi B, Alsagri AS, Shahsavar A, Talebizadeh P. Characterization of the nanoparticles, the stability analysis and the evaluation of a new hybrid nano-oil thermal conductivity. J Therm Anal Calorim. 2020;139:1553–64.
Chen Z, Shahsavar A, Alrashed AAAA, Afrand M. The impact of sonication and stirring durations on the thermal conductivity of alumina-liquid paraffin nanofluid: an experimental assessment. Powder Technol. 2020;360:1134–42.
Wu H, Al-Rashed AAAA, Barzinjy AA, Shahsavar A, Karimi A, Sardari PT. Curve-fitting on experimental thermal conductivity of motor oil under influence of hybrid nano additives containing multi-walled carbon nanotubes and zinc oxide. Phys A. 2019;535:122128.
Khalil KS, Mahmoudi SR, Abu-dheir N, Varanasi KK. Active surfaces: ferrofluid-impregnated surfaces for active manipulation of droplets. Appl Phys Lett. 2014;105:2014.
Zhang H, Zhao Y, Fang W, Zhang C, Zhu F, Jin L, Yang C. Active control of the freezing process of a ferrofluid droplet with magnetic fields. Appl Therm Eng. 2020;176:115444.
Favakeh A, Bijarchi MA, Shafii MB. Ferrofluid droplet formation from a nozzle using alternating magnetic field with different magnetic coil positions. J Magn Magn Mater. 2020;498:166134.
Abadeh A, Sardarabadi M, Abedi M, Pourramezan M, Passandideh-Fard M, Maghrebi MJ. Experimental characterization of magnetic field effects on heat transfer coefficient and pressure drop for a ferrofluid flow in a circular tube. J Mol Liq. 2020;299:112206.
Lee M, Kim YJ. Effect of non-uniform magnetic fields on the characteristics of ferrofluid flow in a square enclosure. J Magn Magn Mater. 2020;506:166697.
Sadaghiani AK, Rajabnia H, Celik S, Noh H, Kwak HJ, Nejatpour M, Park HS, Acar HY, Misiroglu B, Ozdemir MR, Kosar A. Pool boiling heat transfer of ferrofluids on structured hydrophilic and hydrophobic surfaces: the effect of magnetic field. Int J Therm Sci. 2020;155:106420.
Maiorov MM, Zablotsky D, Blums E, Lickrastina A. Magnetic field control of gas-liquid mass transfer in ferrofluids. J Magn Magn Mater. 2020;497:165958.
Dzyubenko BV. Influence of flow twisting on convective heat transfer in banks of twisted tubes. Heat Transf Res. 2015;36:449–59.
Zhang XX, Wei GH, Sang ZF. Experimental research of heat transfer and flow friction properties in twisted tube heat exchanger. Chem Eng. 2015;35:17–20.
Omidi M, RabienatajDarzi AA, Farhadi M. Turbulent heat transfer and fluid flow of alumina nanofluid inside three-lobed twisted tube. J Therm Anal Calorim. 2019;137:1451–62.
Alempour SM, AbbasianArani AA, Najafizadeh M. Numerical investigation of nanofluid flow characteristics and heat transfer inside a twisted tube with elliptic cross section. J Therm Anal Calorim. 2020;140:1237–57.
Eltaweel M, Abdel-Rehim AA, Hussein H. Indirect thermosiphon flat-plate solar collector performance based on twisted tube design heat exchanger filled with nanofluid. Int J Energy Res. 2020;44:4269–78.
Niknejadi MR, Afrand M, Karimipour A, Shahsavar A, MeghdadiIsfahani AH. Experimental investigation of the hydrothermal aspects of water–Fe3O4 NF inside a twisted tube. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09271-0.
Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J Mech Sci Technol. 2016;30:809–15.
Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic field. Exp Thermal Fluid Sci. 2016;76:1–11.
Shah RK, London AL. Laminar flow forced convection in ducts, supplement 1 to advances i heat transfer. New York: Academic press; 1978.
Liu WI, Alsarraf J, Shahsavar A, Rostamzadeh M, Afrand M, Nguyen TK. Impact of oscillating magnetic field on the thermal-conductivity of water–Fe3O4 and water–Fe3O4/CNT ferro-fluids: experimental study. J Magn Magn Mater. 2019;484:258–65.
Hong H, Wright B, Wensel J, Jin S, Ye XR, Roy W. Enhanced thermal conductivity by the magnetic field in heat transfer NFs containing carbon nanotube. Synth Met. 2007;157:437–40.