An experimental study on critical velocity in sloping tunnel with longitudinal ventilation under fire

Tunnelling and Underground Space Technology - Tập 43 - Trang 198-203 - 2014
Yi Liang1, Qi-qi Xu2, Zhisheng Xu2, Dexing Wu3
1Institute of Disaster Prevention Science and Safety Technology, Central South University, Changsha, Hunan, China
2Institute of Disaster Prevention Science & Safety Technology, Central South University, Changsha Hunan China
3Zhejiang Provincial Institute of Communications Planning, Design and Research, Hangzhou, Zhejiang, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Atkinson, 1996, Smoke control in sloping tunnels, Fire Saf. J., 27, 335, 10.1016/S0379-7112(96)00061-6

Ballesteros-Tajadura, 2006, Influence of the slope in the ventilation semi-transversal system of an urban tunnel, Tunn. Undergr. Sp. Technol., 21, 21, 10.1016/j.tust.2005.04.006

Chen, 2013, Studies on buoyancy driven two-directional smoke flow layering length with combination of point extraction and longitudinal ventilation in tunnel fires, Fire Saf. J., 59, 94, 10.1016/j.firesaf.2013.04.003

Chow, 2010, Longitudinal ventilation for smoke control in a tilted tunnel by scale modeling, Tunn. Undergr. Sp. Technol., 25, 122, 10.1016/j.tust.2009.10.001

Danziger, N.H., Kennedy, W.D., 1982. Longitudinal ventilation analysis for the Glenwood canyon tunnels. In: Proceedings of the Fourth International Symposium Aerodynamics and Ventilation of Vehicle Tunnels, pp. 169–186.

Hu, 2003, On the maximum smoke temperature under the ceiling in tunnel fires, Tunn. Undergr. Sp. Technol., 21, 650, 10.1016/j.tust.2005.10.003

Hu, 2005, Full-scale burning tests on studying smoke temperature and velocity along a corridor, Tunn. Undergr. Sp. Technol., 20, 223, 10.1016/j.tust.2004.08.007

Hu, 2008, Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel, J. Hazard. Mater., 150, 68, 10.1016/j.jhazmat.2007.04.094

Hu, 2013, An experimental investigation and correlation on buoyant gas temperature below ceiling in a slopping tunnel fire, Appl. Therm. Eng., 51, 246, 10.1016/j.applthermaleng.2012.07.043

Hu, 2013, A non-dimensional global correlation of maximum gas temperature beneath ceiling with different blockage-fire distance in a longitudinal ventilated tunnel, Appl. Therm. Eng., 56, 77, 10.1016/j.applthermaleng.2013.03.021

Hwang, 2005, The critical ventilation velocity in tunnel fires-a computer simulation, Fire Saf. J., 40, 213, 10.1016/j.firesaf.2004.11.001

Kang, 2010, Characteristic length scale of critical ventilation velocity in tunnel smoke control, Tunn. Undergr. Sp. Technol., 25, 205, 10.1016/j.tust.2009.11.004

Ko, 2010, An experimental study on the effect of slope on the critical velocity in tunnel fires, J. Fire Sci., 28, 27, 10.1177/0734904109106547

Kunsch, 2002, Simple model for control of fire gases in a ventilated tunnel, Fire Saf. J., 37, 67, 10.1016/S0379-7112(01)00020-0

Kurioka, 2003, Fire properties in near field of square fire source with longitudinal ventilation in tunnels, Fire Saf. J., 38, 319, 10.1016/S0379-7112(02)00089-9

Lee, 2005, An experimental study of the effect of the aspect ratio on the critical velocity in longitudinal ventilation tunnel fires, J. Fire Sci., 23, 119, 10.1177/0734904105044630

Li, 2010, Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires, Fire Saf. J., 45, 361, 10.1016/j.firesaf.2010.07.003

Li, 2011, The maximum temperature of buoyancy- driven smoke flow beneath the ceiling in tunnel fires, Fire Saf. J., 46, 204, 10.1016/j.firesaf.2011.02.002

Li, 2012, Experimental study of smoke spread in tilted urban traffic tunnels fires, Proc. Eng., 45, 690, 10.1016/j.proeng.2012.08.224

Li, 2012, Fire-induced flow temperature along tunnels with longitudinal ventilation, Tunn. Undergr. Sp. Technol., 32, 44, 10.1016/j.tust.2012.05.003

McCaffrey, B.J., Quintiere, J.G., 1977. Buoyancy driven Countercurrent flows generated by fire source. In: Spalding, D.B., Afgan, N. (Eds.), Heat Transfer and Turbulent Buoyant Convection, Hemisphere Publishing Co., Washington, USA, pp. 457–472.

Ministry of Transport of PR of China, 2000. Ministry of Transport of the People’s Republic of China. JTJ 0.26.1-1999, Specifications for design of ventilation and lighting of highway tunnel.

Oka, 1995, Control of smoke flow in tunnel fires, Fire Saf. J., 25, 305, 10.1016/0379-7112(96)00007-0

Palazzi, 2009, Tunnel ventilation modeling in sloped tunnels, Chem. Eng. Trans., 17, 349

Quintiere, 1989, Scaling Applications in Fire Research, Fire Saf. J., 15, 3, 10.1016/0379-7112(89)90045-3

Roh, 2007, Critical velocity and burning rate in pool fire during longitudinal ventilation, Tunn. Undergr. Sp. Technol., 22, 262, 10.1016/j.tust.2006.08.003

Roh, 2007, Tunnel fires: experiments on critical velocity and burning rate in pool fire during longitudinal ventilation, J. Fire Sci., 25, 161, 10.1177/0734904107067300

Tang, 2013, Effect of blockage-fire distance on buoyancy driven back-layering length and critical velocity in a tunnel: An experimental investigation and global correlations, Appl. Therm. Eng., 60, 7, 10.1016/j.applthermaleng.2013.06.033

Thomas, P.H., 1968. The Movement of Smoke in Horizontal Passages Against an Air Flow. Fire Research Note, No. 723, Fire Research Station, Watford, UK.

Wu, 2000, Control of smoke flow in tunnel fires using longitudinal ventilation systems – a study of the critical velocity, Fire Saf. J., 35, 363, 10.1016/S0379-7112(00)00031-X

Yi, 2013, Experimental studies on smoke movement in a model tunnel with longitudinal ventilation, Tunn. Undergr. Sp. Technol., 35, 135, 10.1016/j.tust.2013.01.005