An experimental study of chondrule formation from chondritic precursors via evaporation and condensation in Knudsen cell: Shock heating model of dust aggregates
Tài liệu tham khảo
Alexander, 2008, The formation conditions of chondrules and chondrites, Science, 320, 1617, 10.1126/science.1156561
Carlson, 1967, The Knudsen effusion method, 115
Chase, 1985, JANAF thermochemical tables, J. Phys. Chem. Ref. Data, 14, 1
Chaussidon, 2008, Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System, Geochim. Cosmochim. Acta, 72, 1924, 10.1016/j.gca.2008.01.015
Cohen, 2004, An experimental study of the formation of metallic iron in chondrules, Geochim. Cosmochim. Acta, 68, 1677, 10.1016/j.gca.2003.10.004
Cohen, 2004, The formation of chondrules by open-system melting of nebular condensates, Geochim. Cosmochim. Acta, 68, 1661, 10.1016/j.gca.2003.09.009
Connolly, 2006, Transient heating events in the protoplanetary nebula, 383
Dauphas, 2015, Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry, Earth Planet. Sci. Lett., 427, 236, 10.1016/j.epsl.2015.07.008
Ebel, 2000, Condensation in dust-enriched systems, Geochim. Cosmochim. Acta, 64, 339, 10.1016/S0016-7037(99)00284-7
Fedkin, 2013, Vapor saturation of sodium: key to unlocking the origin of chondrules, Geochim. Cosmochim. Acta, 112, 226, 10.1016/j.gca.2013.02.020
Greshake, 2003, NWA 1465 and NWA 1665: two unusual carbonaceous chondrites from Northwest Africa
Grossman, 2008, Redox conditions in the solar nebula: observational, experimental, and theoretical constraints, vol. 68, 93
Grossman, 2012, Formation of the first oxidized iron in the solar system, Meteorit. Planet. Sci., 47, 2160, 10.1111/j.1945-5100.2012.01353.x
Hashimoto, 1983, Evaporation metamorphism in the early solar nebula – evaporation experiments on the melt FeO–MgO–SiO2–CaO–Al2O3 and chemical fractionations of primitive materials, Geochem. J., 17, 111, 10.2343/geochemj.17.111
Hewins, 1991, Retention of sodium during chondrule melting, Geochim. Cosmochim. Acta, 55, 935, 10.1016/0016-7037(91)90152-U
Hewins, 1997, Chondrules, Ann. Rev. Earth Planet. Sci., 25, 61, 10.1146/annurev.earth.25.1.61
Hewins, 2012, Chondrules: precursors and interactions with the nebular gas, Meteorit. Planet. Sci., 47, 1120, 10.1111/j.1945-5100.2012.01376.x
Hezel, 2010, The chemical relationship between chondrules and matrix and the chondrule matrix complementary, Earth Planet. Sci. Lett., 294, 85, 10.1016/j.epsl.2010.03.008
Hezel, 2010, A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites, Earth Planet. Sci. Lett., 296, 423, 10.1016/j.epsl.2010.05.029
Huebner, 1971, Buffering technique for hydrostatic systems at elevated pressures, 123
Hutchison, 1996, Chondrules and their associates in ordinary chondrites: a planetary connection?, 311
Ikeda, 1980, Petrology of Allan Hills-764 chondrite (L3), 50
Imae, 2013, Micrometeorite precursors: clues from the mineralogy and petrology of their relict minerals, Geochim. Cosmochim. Acta, 100, 116, 10.1016/j.gca.2012.09.052
Jarosewich, 1987, Bulk chemical analysis of the Allende meteorite reference sample, vol. 27, 27
Jones, 1996, Relict grains in chondrules: evidence for chondrule recycling, 163
Kitamura, 1996, Collision of icy and slightly differentiated bodies as an origin for unequialibrated ordinary chondrites, 319
Kozasa, 1988, Formation of iron-bearing materials in a cooling gas of solar composition, Icarus, 73, 180, 10.1016/0019-1035(88)90091-7
Krot, 2004, Ameboid olivine aggregates with low-Ca pyroxenes: a genetic link between refractory inclusions and chondrules?, Geochim. Cosmochim. Acta, 68, 1923, 10.1016/j.gca.2003.10.026
Libourel, 2007, Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin, Earth Planet. Sci. Lett., 254, 1, 10.1016/j.epsl.2006.11.013
Lofgren, 2002, Experimental reproduction of type-1B chondrules
McSween, 1983, Ferromagnesian chondrules in carbonaceous chondrites, 195
Morris, 2010, Thermal histories of chondrules in solar nebula shocks, Astrophys. J., 722, 1474, 10.1088/0004-637X/722/2/1474
Mullane, 2005, Nebular and asteroid modification of the iron isotope composition of chondritic components, Earth Planet. Sci. Lett., 239, 203, 10.1016/j.epsl.2005.07.026
Nagahara, 1981, Evidence for secondary origin of chondrules, Nature, 292, 135, 10.1038/292135a0
Nagahara, 1996, Evaporation of forsterite in H2 gas, Geochim. Cosmochim. Acta, 60, 1445, 10.1016/0016-7037(96)00014-2
Ruzicka, 2012, Chondrule formation by repeated evaporative melting and condensation in collisional debris clouds around planetesimals, Meteorit. Planet. Sci., 47, 2218, 10.1111/j.1945-5100.2012.01412.x
Sata, 1978, Vaporization processes from magnesia materials, Rev. Int. Hautes Temp. Réfract., Fr., 15, 237
Scott, 1983, Chondrules and other components in C, O, and E chondrites: similarities with their properties and origins, J. Geophys. Res., 88, B275, 10.1029/JB088iS01p0B275
Shu, 1996, Toward an astrophysical theory of chondrites, Science, 271, 1545, 10.1126/science.271.5255.1545
Tenner, 2015, Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: influence of dust enrichment and H2O during chondrule formation, Geochim. Cosmochim. Acta, 148, 228, 10.1016/j.gca.2014.09.025
Tissandier, 2002, Gas–melt interactions and their bearing on chondrule formation, Meteorit. Planet. Sci., 37, 1377, 10.1111/j.1945-5100.2002.tb01035.x
Tsuchiyama, 1980, Experimental reproduction of textures of chondrules, Earth Planet. Sci. Lett., 48, 155, 10.1016/0012-821X(80)90178-8
Villeneuve, 2015, Relationship between type I and type II chondrules: implications on chondrule formation processes, Geochim. Cosmochim. Acta, 160, 277, 10.1016/j.gca.2015.03.033
Young, 1998, Non-Rayleigh oxygen isotopic fractionation by mineral evaporation: theory and experiments in the system SiO2, Geochim. Cosmochim. Acta, 62, 3109, 10.1016/S0016-7037(98)00213-0
Yu, 1995, Experimental study of high temperature oxygen isotope exchange during chondrule formation, Geochim. Cosmochim. Acta, 59, 2095, 10.1016/0016-7037(95)00129-8
Yurimoto, 2004, Molecular cloud origin for the oxygen isotope heterogeneity in the solar system, Science, 305, 1763, 10.1126/science.1100989
Zanda, 1994, Origin and metamorphic redistribution of silicon, chromium and phosphorus in the metal of chondrites, Science, 265, 846, 10.1126/science.265.5180.1846