An experimental and numerical study of the influence of viscosity on the behavior of dam-break flow

Theoretical and Computational Fluid Dynamics - Tập 35 - Trang 345-362 - 2021
Le-Quyen Nguyen-Thi1, Viet-Dung Nguyen1, Xavier Pierens1, Patrice Coorevits1
1University of Picardie Jules Verne – IUT of Aisne, Saint, France

Tóm tắt

In this paper, experimental and numerical methods are presented to investigate the dam-break flow in a horizontal rectangular section flume. In the experimental part of the research, different configurations have been tested: dry flume and the presence of shallow ambient water downstream with varied depth. In addition, experiments with viscosity changes in the fluid have been conducted. Numerically, the volume of the fluid method associated with the shear-stress transport turbulence model was used to examine the dam-break flow dynamics. Based on a review of analytical models in the literature, formulas for free water surfaces and propagation fronts were detailed. Qualitatively, various experimental snapshots of free water surfaces were obtained from the digitized images and compared with numerical predictions. Typical jet-like and mushroom-like formations have been observed. Experimental free surface profiles have been plotted against analytical and numerical results for different flow stages. The simulation of high-viscous fluid was conducted to emphasize the role of viscosity in negative wavefront velocity. By the comparison of the dam-break front locations from analytical, experimental, and numerical data, the effects of viscosity on the dam-break flow have been examined. In line with this, the influence of ambient water depth on the front propagation’s average velocity has been investigated.  Finally, the air bubble characteristics, such as area, shape, and lifetime under the effects of fluid viscosity and surface tension, have been explored.

Tài liệu tham khảo

Aguirre-Pe, J., Plachco, F.P., Quisca, S.: Tests and numerical one-dimensional modelling of a high-viscosity fluid dam-break wave. J. Hydraul. Res. 33(1), 17–26 (1995). https://doi.org/10.1080/00221689509498681 Ancey, C., Cochard, S., Andreini, N.: The dam-break problem for viscous fluids in the high-capillary-number limit. J. Fluid Mech. 624, 1–22 (2009). https://doi.org/10.1017/S0022112008005041 Aureli, F., Mignosa, P., Tomirotti, M.: Numerical simulation and experimental verification of dam-break flows with shock. J. Hydraul. Res. 38(3), 197–206 (2000). https://doi.org/10.1080/00221680009498337 Bell, S.W., Elliot, R.C., Chaudhry, M.H.: Experimental results of two dimensional dam-break flows. J. Hydraul. Res. 30(2), 225–252 (1992). https://doi.org/10.1080/00221689209498936 Castro-Orgaz, O., Chanson, H.: Ritter’s dry-bed dam-break flows: positive and negative wave dynamics. Environ. Fluid Mech. 17, 665–694 (2017). https://doi.org/10.1007/s10652-017-9512-5 Castro-Orgaz, O., Chanson, H.: Undular and broken surges in dam-break flows: a review of wave breaking strategies in a Boussinesq-type framework. Environ. Fluid Mech. (2020). https://doi.org/10.1007/s10652-020-09749-3 Chanson, H.: Drag reduction in open channel flow by aeration and suspended load. J. Hydraul. Res. 32(1), 87–101 (1994). https://doi.org/10.1080/00221689409498791 Chanson, H.: Analytical Solutions of Laminar and Turbulent Dam Break Wave. Proc. Intl Conf. Fluvial Hydraulics River Flow 2006, Lisbon, Portugal, 6-8 Sept., Topic A3, paper A3008 (2006) Deike, L., Kendall Melville, W., Popinet, S.: Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91–129 (2016). https://doi.org/10.1017/jfm.2016.372 Didden, N., Maxworthy, T.: The viscous spreading of plane and axisymmetric gravity currents. J. Fluid Mech. 121, 27–42 (1982). https://doi.org/10.1017/S0022112082001785 Dressler, R.: Comparison of theories and experiments for the hydraulic dam-break wave. Proc. Int. Assoc. Sci. Hydrol. Assemblée Générale Rome 3(38), 319–328 (1954) Dutykh, D., Mitsotakis, D.: On the relevance of the dam-break problem in the context of non-linear shallow water equations. Discrete Contin. Dyn. Syst. Ser. S 3(2), 1–20 (2010). https://doi.org/10.1080/002216895094986810 Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1080/002216895094986811 Houltd, P.: Oil spreading on the sea. Ann. Rev. Fluid Mech. 4, 341–368 (1972). https://doi.org/10.1080/002216895094986812 Hui, J., Shao, S., Huang, Y., Hussain, K.: Evaluations of SWEs and SPH numerical modelling techniques for dam break flows. Eng. Appl. Comput. Fluid Mech. 7(4), 544–563 (2013). https://doi.org/10.1080/002216895094986813 Huppert, H.E.: The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 43–58 (1982). https://doi.org/10.1080/002216895094986814 Jánosi, I.M., Jan, D., Szabo, K.G., Tel, T.: Turbulent drag reduction in dam-break flows. Exp. Fluids 37, 219–229 (2004). https://doi.org/10.1080/002216895094986815 Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B., Buchner, B.: A volume-of-fluid based simulation method for wave impact problems. J. Comput. Phys. 206, 363–393 (2005). https://doi.org/10.1080/002216895094986816 Kocaman, S., Ozmen-Cagatay, H.: The effect of lateral channel contraction on dam break flows: laboratory experiment. J. Hydrol. 432–433, 145–153 (2012). https://doi.org/10.1080/002216895094986817 Lauber, G., Hager, W.H.: Experiments to dam-break wave: sloping channel. J. Hydraul. Res. 36(5), 761–773 (1998). https://doi.org/10.1080/002216895094986818 Leal, J., Ferreira, R.M.L., Cardoso, A.H.: Dam-break wave-front celerity. J. Hydraul. Eng. 132(1), 69–76 (2006). https://doi.org/10.1080/002216895094986819 Li, X., Zhao, J.: Dam-break of mixtures consisting of non-Newtonian liquids and granular particles. Powder Technol. 338, 493–505 (2018). https://doi.org/10.1017/S00221120080050410 Lister, J.R.: Viscous flows down an inclined plane from point and line sources. J. Fluid Mech. 242, 631–653 (1992). https://doi.org/10.1017/S00221120080050411 Lobovský, L., Botia-Vera, E., Castellana, F., Mas-Soler, J., Souto-Iglesias, A.: Experimental investigation of dynamic pressure loads during dam break. J. Fluids Struct. 48, 407–434 (2014). https://doi.org/10.1017/S00221120080050412 Menter, F.R., Kuntz, M., Langtry, R.: Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer 4, ed: K. Hanjalic, Y. Nagano, and M. Tummers, Begell House, Inc. ISBN:1567001963. pp. 625–632 (2003) Mokrani, C., Abadie, S.: Conditions for peak pressure stability in VOF simulations of dam break flow impact. J. Fluids Struct. 62, 86–103 (2016). https://doi.org/10.1016/j.jfluidstructs.2015.12.007 Motozawa, M., Sawada, T., Ishitsuka, S., Iwamoto, K., Ando, H., Senda, T., Kawaguchi, Y.: Experimental investigation on streamwise development of turbulent structure of drag-reducing channel flow with dosed polymer solution from channel wall. Int. J. Heat Fluid Flow 50, 51–62 (2014). https://doi.org/10.1016/j.ijheatfluidflow.2014.05.009 Nistor, I., Palermo, D., Nouri, Y., Murty, T., Saatcioglu, M.: Tsunami-induced forces on structures. Handb. Coast. Ocean Eng. (2009). https://doi.org/10.1142/9789812819307_0011 Ozmen-Cagatay, H., Kocaman, S., Guzel, H.: Investigation of dam-break flood waves in a dry channel with a hump. J. Hydro-environ. Res. 8, 304–315 (2014). https://doi.org/10.1016/j.jher.2014.01.005 Peregrine, D.H.: Steep Unsteady Water Waves and Boundary Integral Methods. In: Cruse T.A. (eds) Advanced Boundary Element Methods. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg (1988). https://doi.org/10.1007/978-3-642-83003-7_31 Pu, J.H.: Turbulent rectangular compound open channel flow study using multi-zonal approach. Environ. Fluid Mech. 19, 785–800 (2018). https://doi.org/10.1007/s10652-018-09655-9 Ritter, A.: Die Fortpflanzung der Wasserwellen. Vereine Deutcher Ingenieure Zeitswchrift. 36, 947–954 (1892). ((in German)) Schmitt, F.G.: About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique. 335 (9–10): 617-627. https://doi.org/10.1016/j.crme.2007.08.004 Shaheed, R., Mohammadian, A., Gildeh, H.K. : A comparison of standard k–\(\varepsilon \) and realizable k–\(\varepsilon \) turbulence models in curved and confluent channels. 19: 543–568 (2019). https://doi.org/10.1007/s10652-018-9637-1 Stagonas, D., Warbrick, D., Muller, G., Magagna, D.: Surface tension effects on energy dissipation by small scale, experimental breaking waves. Coast. Eng. 58, 826–836 (2011). https://doi.org/10.1016/j.coastaleng.2011.05.009 Stansby, P.K., Chegini, A., Barnes, T.C.D.: The initial stages of dam-break flow. J. Fluid Mech. 374, 407–424 (1998). https://doi.org/10.1017/S0022112098009975 Stoker, J.J.: Water waves. Interscience publ. Inc., New York (1957) Sturm, T.W.: Open channel hydraulics. McGraw-Hill Science, New York (2001). https://doi.org/10.1115/1.1421122 Techet, A.H., McDonald, A.K.: High Speed PIV of Breaking Waves on Both Sides of the AirWater Interface. 6th International Symposium on Particle Image Velocimetry, Pasadena, California, USA, September 21–23 (2005). https://pdfs.semanticscholar.org/9f61/7a73820047d34c61f02f2e10b39f680d81e1.pdf Tomboulides, A., Aithal, S.M., Fischer, P.F., Merzari, E., Obabko, A.V., Shaver, D.R.: A novel numerical treatment of the near-wall regions in the k \(- \quad \omega \) class of RANS models. Int. J. Heat Fluid Flow 72, 186–199 (2018). https://doi.org/10.1016/j.ijheat?uid?ow.2018.05.017 Vallier A.: Simulations of cavitation - from the large vapour structures to the small bubble Dynamics. Thesis, Lund University, (2013). https://doi.org/10.1016/j.jfluidstructs.2015.12.0070 Wang, B., Zhang, J., Chen, Y., Peng, Y., Liu, X., Liu, W.: Comparison of measured dam-break flood waves in triangular and rectangular channels. J. Hydrol. 575, 690–703 (2019). https://doi.org/10.1016/j.jfluidstructs.2015.12.0071 Wu, G., Li, C., Huang, D., Zhao, Z., Feng, X., Wang, R.: Drag reduction by linear viscosity model in turbulent channel flow of polymer solution. J. Cent. South Univ. Technol. 15(s1), 243–246 (2008). https://doi.org/10.1016/j.jfluidstructs.2015.12.0072 Ye, Z., Zhao, Z.: Investigation of water-water interface in dam break flow with a wet bed. J. Hydrol. 548, 104–120 (2017). https://doi.org/10.1016/j.jfluidstructs.2015.12.0073 Zhang, D.: Comparison of various turbulence models for unsteady flow around a finite circular cylinder at Re=20000. J. Phys. Conf. Ser. 910, 012027 (2017). https://doi.org/10.1016/j.jfluidstructs.2015.12.0074