Phân tích thực nghiệm ảnh hưởng của chất hoạt động bề mặt CTAB đến các thuộc tính nhiệt- vật lý và tính ổn định của nanofluid MWCNT/nước

Applied Nanoscience - Tập 12 - Trang 1941-1966 - 2022
Neeti Arora1, Munish Gupta1
1Department of Mechanical Engineering, Guru Jambheshwar University of Science and Technology, Hisar, India

Tóm tắt

Để đạt được hiệu suất nhiệt cao của môi trường truyền nhiệt trong các ngành công nghiệp gia nhiệt và làm mát chất lỏng, các chất lỏng mới liên tục được phát triển. Nanofluid với các thuộc tính nhiệt- vật lý tốt và độ ổn định lâu dài được các nhà nghiên cứu ưu tiên. Trong nghiên cứu này, ống nano carbon đa lớp (MWCNT) được xem xét như là các hạt nano do khả năng dẫn nhiệt (TC) rất cao của nó. Để cải thiện tính ổn định trong sự phân tán với nước, một chất hoạt động bề mặt phù hợp như cetyl trimethyl ammonium bromide (CTAB) được sử dụng. Trong bài báo này, một đánh giá toàn diện và sâu sắc về các thuộc tính nhiệt- vật lý và tính ổn định của nanofluid MWCNT/nước đã được thực hiện. Tiếp theo đó, ảnh hưởng của chất hoạt động bề mặt CTAB lên các nồng độ trọng lượng khác nhau (0,01, 0,05, 0,1 và 0,3 wt%) của các mẫu nanofluid ở các nhiệt độ khác nhau (30–80 °C) đã được nghiên cứu. TC của nanofluid được cải thiện với sự tăng lên của nhiệt độ cũng như nồng độ nanofluid. Sự gia tăng tối đa 33,42% về TC được quan sát cho 0,3 wt% ở 80 °C so với giá trị nước cất. Độ nhớt của nanofluid được tăng cường với nồng độ nanofluid và giảm khi nhiệt độ tăng. Sự gia tăng tối đa 64,32% về độ nhớt được quan sát cho 0,3 wt% ở 30 °C so với nước cất. Các giá trị đo thực nghiệm cho TC và độ nhớt cũng được so sánh với các giá trị do các mô hình lý thuyết tiêu chuẩn sản xuất. Hai mối tương quan được đề xuất cho TC và độ nhớt với sai số nhỏ nhất (MOD) và hệ số hồi quy tối đa (R2) chứng minh độ chính xác. Ảnh hưởng của chất hoạt động bề mặt CTAB lên cả TC và độ nhớt cũng được đánh giá. Toàn bộ bản chất của nanofluid đã hoàn toàn thay đổi từ kỵ nước thành ưa nước, từ độ tan thấp trong dung môi phân cực (ví dụ: nước) thành độ tan cao và từ độ ổn định thấp đến rất cao sau khi thêm CTAB. Tính ổn định của nanofluid có chất hoạt động bề mặt tăng lên rất nhiều vượt quá 6 tháng (trừ 0,01 wt%) so với nanofluid không có chất hoạt động bề mặt chỉ 17 ngày.

Từ khóa

#MWCNT #nanofluid #CTAB #thuộc tính nhiệt-vật lý #tính ổn định

Tài liệu tham khảo

Aghahadi MH, Niknejadi M, Toghraie D (2019) An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids. J Mol Struct 1197:497–507 Akhavan-Behabadi MA, Shahidi M, Aligoodarz MR (2015) An experimental study on heat transfer and pressure drop of MWCNT–water nano-fluid inside horizontal coiled wire inserted tube. Int Commun Heat Mass Transf 63:62–72 Akhavan-Behabadi MA, Shahidi M, Aligoodarz MR, Fakoor-Pakdaman M (2016) An experimental investigation on rheological properties and heat transfer performance of MWCNT-water nanofluid flow inside vertical tubes. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2016.06.076 Akhilesh M, Santarao K, Babu MVS (2018) Thermal conductivity of CNT-wated nanofluids: a review. Mech Mech Eng 22(1):207–220 Ali N, Teixeira JA, Addali A (2018) A review on nanofluids: fabrication, stability, and thermophysical properties. J Nanomater. https://doi.org/10.1155/2018/6978130 Almanassra IW, Manasrah AD, Al-Mubaiyedh UA, Al-Ansari T, Malaibari ZO, Atieh MA (2020) An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: a comparison study. J Mol Liq 304:111025 Al-Rashed AA, Kolsi L, Oztop HF, Aydi A, Malekshah EH, Abu-Hamdeh N, Borjini MN (2018) 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Physica E 99:294–303 Arora N, Gupta M (2019) A review on synthesis and heat transfer applications of carbon nanotubes nanofluid. J Composition Theory 12(7):633 Arora N, Gupta M (2020) An updated review on application of nanofluids in flat tubes radiators for improving cooling performance. Renew Sustain Energy Rev 134:110242 Arora N, Gupta M (2021) Thermo-hydraulic performance of nanofluids in enhanced tubes -a review. Heat Mass Transf 57:377–404 Arzani HK, Amiri A, Kazi SN, Chewa BT, Badarudin A (2016) Experimental investigation of thermophysical properties and heat transfer rate of covalently functionalized MWCNT in an annular heat exchanger. Int Commun Heat Mass Transf 75:67–77 Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C (2005) Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26(3):647–664 Babu JR, Kumar KK, Rao SS (2017) State-of-art review on hybrid nanofluids. Renew Sustain Energy Rev 77:551–565 Bakhtiari R, Kamkari B, Afrand M, Abdollahi A (2021) Preparation of stable TiO2-Graphene/Water hybrid nanofluids and development of a new correlation for thermal conductivity. Powder Technol 385:466–477 Baudot C, Tan CM, Kong JC (2010) FTIR spectroscopy as a tool for nano-material characterization. Infrared Phys Technol 53(6):434–438 Chen HJ, Wen D (2011) Ultrasonic-aided fabrication of gold nanofluids. Nanoscale Res Lett 6(1):198 Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254 Choi TJ, Jang SP, Kedzierski MA (2018) Effect of surfactants on the stability and solar thermal absorption characteristics of water-based nanofluids with multi-walled carbon nanotubes. Int J Heat Mass Transf 122:483–490 Chougule SS, Sahu SK (2014) Thermal performance of automobile radiator using carbon nanotube-water nanofluid—experimental study. J Therm Sci Eng Appl 6(4):041009–041011 Das PK (2017) A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J Mol Liq 240:420–446 Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125(4):567–574 Derakhshan MM, Akhavan-Behabadi MA (2015) Mixed convection of MWCNT-heat transfer oil nanofluid inside inclined plain and microfin tubes under laminar assisted flow. Int J Therm Sci 99:1–8 Derakhshan MM, Akhavan-Behabadi MA (2016) Mixed convection of MWCNT/heat transfer oil nanofluid inside inclined plain and microfin tubes under laminar assisted flow. Int J Therm Sci 99:1–8 Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250 Ebrahimi M, Farhadi M, Sedighi K, Akbarzade S (2014) Experimental investigation of force convection heat transfer in a car radiator filled with SiO2-water nanofluid. Int J Eng 27:333–340 Einstein A (1906) A new determination of molecular dimensions. Ann Phys 19:289–306 Elsaid AM (2019) Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. Int Commun Heat Mass Transf 108:104263 Eman AM, Dawya M, Abouelsayedb A, Elsabbaghc IA, Elfassc MM (2016) Synthesis and characterization of multi-walled carbon nanotubes decorated ZnO nanocomposite. Egypt J Chem 59:1061–1068 Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H (1996) Chemical treatment of carbon nanotubes. Carbon (NY) 34(2):279–281 Gangadevi R, Vinayagam BK, Senthilraja S (2018) Effects of sonication time and temperature on thermal conductivity of CuO/water and Al2O3/water nanofluids with and without surfactant. Mater Today Proc 5(2):9004–9011 Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf 52:5090–5101 Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54(17–18):4051–4068 Gupta M, Arora N, Kumar R, Kumar S, Dilbaghi N (2014) A comprehensive review of experimental investigations of forced convective heat transfer characteristics for various nanofluids. Int J Mech Mater Eng 9(1):11 Gupta M, Kumar R, Arora N, Kumar S, Dilbagi N (2015) Experimental investigation of the convective heat transfer characteristics of TiO2/distilled water nanofluids under constant heat flux boundary condition. J Braz Soc Mech Sci Eng 37(4):1347–1356 Gupta M, Kumar R, Arora N, Kumar S, Dilbagi N (2016) Forced convective heat transfer of MWCNT/water nanofluid under constant heat flux: an experimental investigation. Arab J Sci Eng 41(2):599–609 Gupta M, Singh V, Kumar R, Said Z (2017) A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev 74:638–670 Gupta M, Singh V, Said Z (2020) Heat transfer analysis using zinc Ferrite/water (Hybrid) nanofluids in a circular tube: an experimental investigation and development of new correlations for thermophysical and heat transfer properties. Sustain Energy Technol Assess 39:100720 Hamid KA, Azmi WH, Mamat R, Usri NA, Najafi G (2015) Effect of temperature on heat transfer coefficient of titanium dioxide in ethylene glycol-based nanofluid. J Mech Eng Sci 8:1367–1375 Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund 1(3):187–191 He W, Toghraie D, Lotfipour A, Pourfattah F, Karimipour A, Afrand M (2020) Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube. Int Commun Heat Mass Transf 110:104440 Hosseinian A, Isfahani AM, Shirani E (2018) Experimental investigation of surface vibration effects on increasing the stability and heat transfer coeffcient of MWCNTs-water nanofluid in a flexible double pipe heat exchanger. Exp Thermal Fluid Sci 90:275–285 Huminic G, Huminic A (2018) The heat transfer performances and entropy generation analysis of hybrid nanofluids in a flattened tube. Int J Heat Mass Transf 119:813–827 Huminic G, Huminic A (2019) The influence of hybrid nanofluids on the performances of elliptical tube: recent research and numerical study. Int J Heat Mass Transf 129:132–143 Hussien AA, Abdullah MZ, Yusop NM, Al-Nimr MA, Atieh MA, Mehrali M (2017) Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube. Int J Heat Mass Transf 115:1121–1131 Ibrahim KS (2013) Carbon nanotubes–properties and applications: a review. Carbon Lett 14(3):131–144 Iijima S (1991) Helical microtubules of graphitic carbon. Nature (london) 354:56 Jadar R, Shashishekar KS (2017) f-MWCNT nanomaterial integrated automobile radiator. Mater Today Proc 4:11028–11033 Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318 Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94 Jin C, Wu Q, Yang G, Zhang H, Zhong Y (2021) Investigation on hybrid nanofluids based on carbon nanotubes filled with metal nanoparticles: stability, thermal conductivity, and viscosity. Powder Technol 389:1–10 Kamali R, Binesh AR (2010) Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids. Int Commun Heat Mass Transfer 37:1153–1157 Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanics of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 307:313–317 Khan AI, Arasu AV (2019) A review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluids. Therm Sci Eng Progress 11:334–364 Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D (2019) Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. J Therm Anal Calorim 136(3):1333–1345 Kolsi L, Oztop HF, Ghachem K, Almeshaal MA, Mohammed HA, Babazadeh H, Abu-Hamdeh N (2019) Numerical study of periodic magnetic field effect on 3D natural convection of MWCNT-water/nanofluid with consideration of aggregation. Processes 7(12):957 Koo J, Kleinstreuer C (2005) Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass Transf 32(9):1111–1118 Kumar DD, Arasu AV (2018) A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew Sustain Energy Rev 81:1669–1689 Kumar PG, Kumaresan V, Velraj R (2017) Stability, viscosity, thermal conductivity, and electrical conductivity enhancement of multi-walled carbon nanotube nanofluid using gum Arabic. Fullerenes Nanotubes Carbon Nanostruct 25(4):230–240 Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8):2581–2602 Li X, Zhu D, Wang X (2007) Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J Colloid Interface Sci 310(2):456–463 Li Z, Barnoon P, Toghraie D, Dehkordi RB, Afrand M (2019) Mixed convection of non-Newtonian nanofluid in an H-shaped cavity with cooler and heater cylinders filled by a porous material: two phase approach. Adv Powder Technol 30(11):2666–2685 Li X, Chen W, Zou C (2020) The stability, viscosity and thermal conductivity of carbon nanotubes nanofluids with high particle concentration: a surface modification approach. Powder Technol 361:957–967 Li Y, Shahsavar A, Talebizadehsardari P (2021) Thermal conductivity of ethylene glycol-based nanofluid containing SiO2 nanoadditives: experimental data and modeling through curve fitting. J Therm Anal Calorim 146(3):1101–1109 Mahbubul IM, Saidur R, Amalina MA, Elcioglu EB, Okutucu-Ozyurt T (2015) Effective ultrasonication process for better colloidal dispersion of nanofluid. Ultrason Sonochem 26:361–369 Mahbubul IM, Elcioglu EB, Saidur R, Amalina MA (2017) Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason Sonochem 37:360–367 Maxwell JC (1881) A treatise on electricity and magnetism, vol 1. Clarendon press Megatif L, Ghozatloo A, Arimi A, Shariati-Niasar M (2016) Investigation of laminar convective heat transfer of a novel TiO2–carbon nanotube hybrid water-based nanofluid. Experimental Heat Transfer 29(1):124–138. https://doi.org/10.1080/08916152.2014.973974 Mukherjee S, Paria S (2013) Preparation and stability of nanofluids-a review. IOSR J Mech Civil Eng 9(2):63–69 Nasiri A, Shariaty-Niasar M, Rashidi AM, Khodafarin R (2012) Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf 55(5–6):1529–1535 Pakdaman MF, Akhavan-Behabadi MA, Razi P (2012) An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Thermal Fluid Sci 40:103–111 Pang C, Jung J-Y, Kang YT (2014) Aggregation based model for thermal conductivity enhancement of nanofluids. Int J Heat Mass Transf 72:392–399 Peixoto RT, Paulinelli VMF, Sander HH, Lanza MD, Cury LA, Poletto LTA (2007) Light transmission through porcelain. Dent Mater 23(11):1363–1368 Phuoc TX, Massoudi M, Chen RH (2011) Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci 50(1):12–18 Pinto RV, Fiorelli FAS (2016) Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng 108:720–739 Poongavanam GK, Panchabikesan K, Murugesan R, Duraisamy S, Ramalingam V (2019) Experimental investigation on heat transfer and pressure drop of MWCNT-Solar glycol based nanofluids in shot peened double pipe heat exchanger. Powder Technol 345:815–824 Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94(2):025901 Prasher R, Bhattacharya P, Phelan PE (2006a) Brownian-motion-based convective conductive model for the effective thermal conductivity of nanofluids. J Heat Transfer 128(6):588–595 Prasher R, Phelan PE, Bhattacharya P (2006b) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6(7):1529–1534 Rashmi W, Ismail AF, Sopyan I, Jameel AT, Yusof F, Khalid M, Mubarak NM (2011) Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. J Exp Nanosci 6(6):567–579 Ren Y, Xie H, Cai A (2005) Effective thermal conductivity of nanofluids containing spherical nanoparticles. J Phys D Appl Phys 38(21):3958 Rostami S, Toghraie D, Shabani B, Sina N, Barnoon P (2021) Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). J Therm Anal Calorim 143(2):1097–1105 Ruhani B, Barnoon P, Toghraie D (2019) Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data. Physica A 525:616–627 Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, Zubir N (2014) An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett 9(1):1–16 Sandhu H, Gangacharyulu D (2017) An experimental study on stability and some thermophysical properties of multiwalled carbon nanotubes with water–ethylene glycol mixtures. Part Sci Technol 35(5):547–554 Selimefendigil F, Öztop HF (2019) Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf 129:265–277 Sezer N, Atieh MA, Koç M (2019) A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol 344:404–431 Shanbedi M, Heris SZ, Amiri A, Hosseinipour E, Eshghi H, Kazi SN (2015) Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube. Energy Convers Manag 105:1366–1376 RK Shukla, VK Dhir (2005) Numerical study of the effective thermal conductivity of nanofluids, Proceedings ASME summer heat transfer conference San Francisco CA 1–5 Singh V, Gupta M (2016) Heat transfer augmentation in a tube using nanofluids under constant heat flux boundary condition: a review. Energy Convers Manag 123:290–307 Singh K, Sharma SK, Gupta SM (2020) Preparation of long duration stable CNT nanofluid using SDS. Integr Ferroelectr 204(1):11–22 Smith JG Jr, Connell JW, Watson KA, Danehy PM (2005) Optical and thermo-optical properties of space durable polymer/carbon nanotube films: experimental results and empirical equations. Polymer 46(7):2276–2284 Soltani F, Toghraie D, Karimipour A (2020) Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions. Powder Technol 371:37–44 Syam Sundar L, Singh MK, Sousa ACM (2014) Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf 52:73–83 Terekhov VI, Kalinina SV, Lemanov VV (2010) The mechanism of heat transfer in nanofluids: state of the art (review). Thermophys Aeromech. https://doi.org/10.1134/S0869864310010014 Tiara AM, Chakraborty S, Sarkar I, Ashok A, Pal SK, Chakraborty S (2017) Heat transfer enhancement using surfactant based alumina nanofluid jet from a hot steel plate. Exp Thermal Fluid Sci 89:295–303 Tiwari AK, Pandya NS, Said Z, Öztop HF, Abu-Hamdeh N (2021) 4S consideration (synthesis, sonication, surfactant, stability) for the thermal conductivity of CeO2 with MWCNT and water based hybrid nanofluid: an experimental assessment. Colloids Surf A Physicochem Eng Asp 610:125918 Toghraie D, Sina N, Jolfaei NA, Hajian M, Afrand M (2019) Designing an artificial neural network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Phys A Stat Mech Appl 534:122142 Wang J, Li G, Li T, Zeng M, Sundén B (2021) Effect of various surfactants on stability and thermophysical properties of nanofluids. J Therm Anal Calorim 143(6):4057–4070 Wong KV, Castillo MJ (2010) Heat transfer mechanisms and clustering in nanofluids. Adv Mech Eng 2:795478 Wu Z, Wang L, Sunden B, Wadso L (2016) Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger. Appl Therm Eng 96:364–371 Xian HW, Sidik NAC, Saidur R (2020) Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int Commun Heat Mass Transf 110:104389 Xie H, Lee H, Youn W, Choi M (2003) Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys 94:4967–4971 Xing M, Yu J, Wang R (2016) Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int J Therm Sci 104:404–411 Yadav P, Gupta SM, Sharma SK (2021) A review on stabilization of carbon nanotube nanofluid. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-10999-6 Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms and applications. J Nanomater 2012:1–17 Yu CJ, Richter AG, Datta A, Durbin MK, Dutta P (1999) Observation of molecular layering in thin liquid films using X-ray reflectivity. Phys Rev Lett 82(11):2326 Yu H, Hermann S, Schulz SE, Gessner T, Dong Z, Li WJ (2012) Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem Phys 408:11–16 Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C 111(4):1646–1650 Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys 9(1):131–139