An evolutionary-driven AI model discovering redox-stable organic electrode materials for alkali-ion batteries

Energy Storage Materials - Tập 61 - Trang 102865 - 2023
Rodrigo P. Carvalho1,2, Daniel Brandell2, C. Moyses Araujo1,3
1Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
2Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, Uppsala 75121, Sweden
3Department of Engineering and Physics, Karlstad University, Karlstad, 65188, Sweden

Tài liệu tham khảo

Butler, 2018, Nature, 559, 547, 10.1038/s41586-018-0337-2 Axelrod, 2022, Acc. Mater. Res., 3, 343, 10.1021/accountsmr.1c00238 Kirkpatrick, 2021, Science, 374, 1385, 10.1126/science.abj6511 Behler, 2017, Angew. Chem. Int. Ed., 56, 12828, 10.1002/anie.201703114 Brockherde, 2017, Nat. Commun., 8, 1, 10.1038/s41467-017-00839-3 Shi, 2022, Exploration Elton, 2018, Sci. Rep., 8, 1, 10.1038/s41598-018-27344-x Häse, 2020, Nat. Commun., 11, 1, 10.1038/s41467-020-17995-8 Liu, 2020, Energy Storage Mater., 31, 434, 10.1016/j.ensm.2020.06.033 Chen, 2020, InfoMat, 2, 553, 10.1002/inf2.12094 Liu, 2017, J. Materi., 3, 159 Chen, 2020, Adv. Energy Mater., 10 Wang, 2021, Energy Storage Mater., 39, 45, 10.1016/j.ensm.2021.04.006 Wang, 2021, Energy Storage Mater., 35, 595, 10.1016/j.ensm.2020.10.022 Wang, 2022, Energy Storage Mater., 45, 1201, 10.1016/j.ensm.2021.11.020 Carvalho, 2022, Energy Storage Mater., 44, 313, 10.1016/j.ensm.2021.10.029 Gu, 2019, J. Mater. Chem. A Mater., 7, 17096, 10.1039/C9TA02356A Zhu, 2020, J. Clean. Prod., 273 Tsamardinos, 2020, Microporous Mesoporous Mater., 300, 10.1016/j.micromeso.2020.110160 Wang, 2020, Energy AI, 1 Poizot, 2011, Energy Environ. Sci., 4, 2003, 10.1039/c0ee00731e Poizot, 2018, Curr. Opin. Electrochem., 9, 70, 10.1016/j.coelec.2018.04.003 Esser, 2021, J. Power Sources, 482, 10.1016/j.jpowsour.2020.228814 Chen, 2008, ChemSusChem, 1, 348, 10.1002/cssc.200700161 Grey, 2017, Nat. Mater., 16, 45, 10.1038/nmat4777 Renault, 2014, ChemSusChem, 7, 2859, 10.1002/cssc.201402440 Larcher, 2015, Nat. Chem., 7, 19, 10.1038/nchem.2085 Yang, 2021, Energy Environ. Sci., 14, 4228, 10.1039/D1EE00419K Wilkinson, 2021, ACS Appl. Energy Mater., 4, 12084, 10.1021/acsaem.1c01339 Ruddigkeit, 2012, J. Chem. Inf. Model., 52, 2864, 10.1021/ci300415d Lee, 2018, Adv. Mater., 30 Kapaev, 2020, J. Mater. Chem. A Mater., 8, 17296, 10.1039/D0TA04741D Zhang, 2021, Chem. A Eur. J., 27, 6131, 10.1002/chem.202005259 Xu, 2020, J. Mater. Chem. A Mater., 8, 15547, 10.1039/D0TA03310C Chen, 2015, Nano Energy, 18, 205, 10.1016/j.nanoen.2015.10.015 Shen, 2014, Electrochem. Commun., 49, 5, 10.1016/j.elecom.2014.09.016 Lee, 2017, Nature Energy, 2, 861, 10.1038/s41560-017-0014-y Xu, 2018, Mater. Today, 21, 60, 10.1016/j.mattod.2017.07.005 Pinheiro, 2020, J. Phys. Chem. A, 124, 9854, 10.1021/acs.jpca.0c05969 Storn, 1997, J. Glob. Optim., 11, 341, 10.1023/A:1008202821328 Price, 2013, Intell. Syst. Ref. Libr., 38, 187 Shao, 2011, IEEE Geosci. Remote Sens. Lett., 8, 113, 10.1109/LGRS.2010.2052782 L. Prechelt, 1998, 55–69. Heinemann, 1996, J. Am. Chem. Soc., 118, 2023, 10.1021/ja9523294 Bader, 1969, Int. J. Quantum Chem., 3, 327, 10.1002/qua.560030308 England, 1971, Theor. Chim. Acta, 22, 196, 10.1007/BF00537628 Bengio, 2014, 1053 Cordero, 2008, Dalton Trans., 2832, 10.1039/b801115j Pyykkö, 2009, Chem. Eur. J., 15, 186, 10.1002/chem.200800987 Pyykkö, 2009, Chem. Eur. J., 15, 12770, 10.1002/chem.200901472 Pyykkö, 2005, Chem. Eur. J., 11, 3511, 10.1002/chem.200401299 Scarselli, 2009, IEEE Trans. Neural Netw., 20, 61, 10.1109/TNN.2008.2005605 Kipf, 2023 Gilmer, 2017, 3, 2053 Simonovsky, 2017, 29