An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach

BMC Pharmacology - Tập 10 Số 1 - 2010
Andrej‐Nikolai Spiess1, Natalie Neumeyer2
1Department of Andrology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
2Department of Mathematics, University of Hamburg, Hamburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Montgomery DC, Peck EA, Vining GG: Introduction to Linear Regression Analysis. 2006, Wiley & Sons, Hoboken

Juliano SA, Williams FM: A comparison of methods for estimating the functional response parameters of the random predator equation. J Anim Ecol. 1987, 56: 641-653. 10.2307/5074.

Miaou SP, Lu A, Lum HS: Pitfalls of using r-squared to evaluate goodness of fit of accident prediction models. Transportation Research Record #1542. 1996, 6-13. 10.3141/1542-02.

Willet JB, Singer JD: Another cautionary note about R-square: Its use in weighted least-squares regression analysis. Amer Stat. 1988, 42: 236-238. 10.2307/2685031.

Anderson-Sprecher R: Model comparisons and R-square. Amer Stat. 1994, 48: 113-117. 10.2307/2684259.

Nagelkerke NJD: A note on a general definition of the coefficient of determination. Biometrika. 1991, 78: 691-692. 10.1093/biomet/78.3.691.

Magee L: R2 measures based on Wald and likelihood ratio joint singnificance tests. Amer Stat. 1990, 44: 250-253. 10.2307/2685352.

Kvalseth TO: Cautionary note about R2. Amer Stat. 1985, 39: 279-285. 10.2307/2683704.

Bates DM, Watts DG: Nonlinear regression analysis and its applications. 1988, New York, John Wiley & Sons, 1

Akaike H: Information theory and an extension of the maximum likelihood principle. Proc 2nd Inter Symposium on Information Theory. 1973, 267-281.

Akaike H: A new look at the statistical model identification. IEEE Transaction on Automatic Control. 1974, 19: 716-723. 10.1109/TAC.1974.1100705.

Akaike H: On the likelihood of a time series model. The Statistician. 1978, 27: 217-235. 10.2307/2988185.

Burnham KP, Anderson DR: Model selection and inference: a practical information-theoretic approach. 2003, Springer Verlag, New York, USA, 2

Wagenmakers EJ, Farrell S: AIC model selection using Akaike weights. Psych Bull & Review. 2004, 11: 192-196.

Schwarz G: Estimating the dimension of a model. Ann Stat. 1978, 6: 461-464. 10.1214/aos/1176344136.

Bevington PR, Robinson DK: Data Reduction and Error Analysis for the Physical Sciences. 2003, McGraw-Hill, New York, Chapter 11: 3

The R project homepage. [ http://www.r-project.org ]

Ritz C, Spiess AN: qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics. 2008, 24: 1549-1551. 10.1093/bioinformatics/btn227.

Gottschalk PG, Dunn JR: The five-parameter logistic: A characterization and comparison with the four-parameter logistic. Anal Biochem. 2005, 343: 54-65. 10.1016/j.ab.2005.04.035.

Zeng QC, Zhang E, Tellinghuisen J: Univariate calibration by reversed regression of heteroscedastic data: a case study. The Analyst. 2008, 133: 1649-1655. 10.1039/b808667b.

Cameron AC, Windmeijer FAG: An R-squared measure of goodness of fit for some common nonlinear regression models. J Econometrics. 1997, 77: 329-342. 10.1016/S0304-4076(96)01818-0.

Glatting G, Kletting P, Reske SN, Hohl K, Ring C: Choosing the optimal fit function: comparison of the Akaike Information Criterion and the f-test. Med Phys. 2007, 34: 4285-4292. 10.1118/1.2794176.