An estimate for the number of consecutive quadratic residues

Moscow University Mathematics Bulletin - Tập 64 - Trang 24-28 - 2009
T. A. Preobrazhenskaya1
1Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia

Tóm tắt

The problem of estimation of the maximal number H of consecutive integer numbers such that they all are either quadratic residues or quadratic nonresidues modulo a prime number p is considered.

Tài liệu tham khảo

G. Pólya, “Über die Verteilung der quadratischen Reste und Nichtreste,” Göttin. Nachr. 21 (1918). I. M. Vinogradov, “Sur la distribution des résidus et des non-résidus des puissances,” Zh. Fiz. Matem. Obshch. Perm’ Univ. 1, 94 (1918). H. Davenport and P. Erdös, The Distribution of Quadratic and Higher Residues,” Publ. Math. Debrecen. 2, 252 (1952). D. A. Burgess, “A Note on the Distribution of Residues and Non-Residues,” J. London Math. Soc. 38, 253 (1963). K. K. Norton, “Bounds for Sequences of Consecutive Power Residues. I. Analytic number theory,” in Proc. Symp. Pure Math. Vol. XXIV. St. Louis Univ, 1972. (Amer. Math. Soc., Providence, 1973), pp. 213–220. R. Lidl and H. Niederreiter, Finite Fields, Vol. 1 (Cambridge Univ. Press, Cambridge, 1997; Mir, Moscow, 1988).