Một mô hình học tổng hợp kết hợp với lựa chọn đặc trưng để dự báo sóng gần bờ
Tóm tắt
Từ khóa
#Feature selection; XGBoost; Nearshore wave; Global wave forecast.Tài liệu tham khảo
[1]. Z. &. D. A. Wei, "A convolutional neural network based model to predict nearshore waves and hydrodynamics," Coastal Engineering, vol. 171, (2022).
[2]. P. P. J. C. M. D. R. & M. S. Bento, "Ocean wave power forecasting using convolutional neural networks," IET Renewable Power Generation, vol. 15, no. 14, pp. 3341-3353, (2021).
[3]. S. H. J. L. Y. L. G. B. F. &. B. Z. Gao, "A forecasting model for wave heights based on a long short-term memory neural network", Acta Oceanologica Sinica, vol. 40, no. 1, pp. 62-69, (2021).
[4]. F. C. & F. L. Minuzzi, "A deep learning approach to predict significant wave height using long short-term memory", Ocean Modelling, vol. 181, (2023).
[5]. S. X. N. & D. S. Fan, "A novel model to predict significant wave height based on long short-term memory network," Ocean Engineering, vol. 205, (2020).
[6]. S. A. S. G. N. G. F. &. S. J. J. Emmanouil, "Statistical models for improving significant wave height predictions in offshore operations," Ocean Engineering, vol. 206, (2020).
[7]. D. S. D. P. S. R. H. S. &. S. A. Adytia, "A Deep Learning Approach for Wave Forecasting Based on a Spatially Correlated Wind Feature, with a Case Study in the Java Sea, Indonesia", Fluids, vol. 7, no. 1, (2022).
[8]. X. R. H. S. J. T. X. L. a. J. L. Q. Lin, "A Hybrid Feature Selection Method Based on Imbalanced Learning for Wave Prediction," in IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA), Kaifeng, China, (2024).
[9]. S. T. T. H. T. M. &. M. H. Kim, "A framework for transformation to nearshore wave from global wave data," Ocean Engineering, vol. 221, (2021).
[10]. N. K. S. R. & A. M. A. Kumar, "Ocean wave height prediction using ensemble of extreme learning machine," Neurocomputing, vol. 277, pp. 12-20, (2018).
[11]. J. &. X. X. Chen, "Ensemble learning based approach for the prediction of monthly significant wave heights," Renewable Energy, (2025).
[12]. F. Z. Y. C. B. &. J. S. C. O’Donncha, "Ensemble model aggregation using a computationally lightweight machine-learning model to forecast ocean waves." Journal of Marine System, vol. 199, (2019).
[13]. X. L. Y. G. S. &. R. P. Zhang, "Ocean wave height series prediction with numerical long short-term memory," Journal of Marine Science and Engineering, vol. 9, no. 5, p. 514, (2021).
[14]. Makarynskyy, "Improving wave predictions with artificial neural networks," Ocean Engineering, vol. 31, no. 5-6, pp. 709-724, (2004).
[15]. A. C. R. I. G. & R. J. R. Castro, "Performance of artificial neural networks in nearshore wave power prediction," Applied Soft Computing, vol. 23, pp. 194-201, (2014).
[16]. J. &. M. E. A. Mahjoobi, "Prediction of significant wave height using regressive support vector machines," Ocean Engineering, vol. 36, no. 5, pp. 339-347, (2009).
[17]. Z. &. D. A. Wei, "A convolutional neural network based model to predict nearshore waves and hydrodynamics," Coastal Engineering, vol. 171, (2022).
[18]. J. X. B. &. W. J. Liu, "Ensemble-based assimilation of wave model predictions: Contrasting the impact of assimilation in nearshore and offshore forecasting at different distances from assimilated data," Applied Ocean Research, vol. 140, (2023).
[19]. S. &. B. S. Adhikary, "Improved Large-Scale Ocean Wave Dynamics Remote Monitoring Based on Big Data Analytics and Reanalyzed Remote Sensing," Nature Environment & Pollution Technology, vol. 22, no. 1, (2023).
[20]. A. &. Y. I. R. Takbash, "Long-term and seasonal trends in global wave height extremes derived from era-5 reanalysis data," Journal of Marine Science and Engineering, vol. 8, no. 12, (2020).
[21]. F. C. &. F. L. Minuzzi, "A deep learning approach to predict significant wave height using long short-term memory," Ocean Modelling, vol. 181, (2023).
[22]. J. L. F. Q. X. W. Y. S. J. S. C. &. Z. C. Zhang, "Improving wave height prediction accuracy with deep learning," Ocean Modelling, vol. 188, (2024).
