An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution

Environment International - Tập 130 - Trang 104909 - 2019
Qian Di1,2, Heresh Amini1, Liuhua Shi1, Itai Kloog3, Rachel Silvern4, James T. Kelly5, Matthew Benjamin Sabath6, Christine Choirat6, Petros Koutrakis1, Alexei Lyapustin7, Yujie Wang8, Loretta J. Mickley9, Joel Schwartz1
1Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States
2Research Center for Public Health, Tsinghua University, Beijing, China
3Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
4Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
5U.S. Environmental Protection Agency, Office of Air Quality Planning & Standards, Research Triangle Park, NC, United States
6Department of Biostatistics, Harvard T.H. Chan School of Public Heath, Boston, MA, United States
7NASA Goddard Space Flight Center, Greenbelt, MD, United States
8University of Maryland Baltimore County, Baltimore, MD, United States
9John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Appel, 2017, Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703, 10.5194/gmd-10-1703-2017

Bai, 2016, A geographically and temporally weighted regression model for ground-level PM2. 5 estimation from satellite-derived 500 m resolution AOD, Remote Sens., 8, 262, 10.3390/rs8030262

Beloconi, 2016, Estimating urban PM10 and PM2. 5 concentrations, based on synergistic MERIS/AATSR aerosol observations, land cover and morphology data, Remote Sens. Environ., 172, 148, 10.1016/j.rse.2015.10.017

Bergstrom, 2007, Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937, 10.5194/acp-7-5937-2007

Bey, 2001, Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation, J. Geophys. Res., 106, 10.1029/2001JD000807

Bishop, 1995

Bishop, 2006

Brokamp, 2017, Exposure assessment models for elemental components of particulate matter in an urban environment: a comparison of regression and random forest approaches, Atmos. Environ., 151, 1, 10.1016/j.atmosenv.2016.11.066

Buchard, 2017, The MERRA-2 aerosol reanalysis, 1980 onward. Part II: evaluation and case studies, J. Clim., 30, 6851, 10.1175/JCLI-D-16-0613.1

Chen, 2018

Chudnovsky, 2012, Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES), J. Air Waste Manage. Assoc., 62, 1022, 10.1080/10962247.2012.695321

Cohen, 2017, Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet, 389, 1907, 10.1016/S0140-6736(17)30505-6

de Hoogh, 2018, Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland, Environ. Pollut., 233, 1147, 10.1016/j.envpol.2017.10.025

de Prado Bert, 2018, The effects of air pollution on the brain: a review of studies interfacing environmental epidemiology and neuroimaging, Cur. Environ. Health Rep., 5, 351, 10.1007/s40572-018-0209-9

DeWinter, 2018, A national-scale review of air pollutant concentrations measured in the US near-road monitoring network during 2014 and 2015, Atmos. Environ., 183, 94, 10.1016/j.atmosenv.2018.04.003

Di, 2016, Assessing PM2. 5 exposures with high spatiotemporal resolution across the continental United States, Environ. Sci. Technol., 50, 4712, 10.1021/acs.est.5b06121

Di, 2017, Air pollution and mortality in the Medicare population, N. Engl. J. Med., 376, 2513, 10.1056/NEJMoa1702747

Dominici, 2006, Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases, Jama, 295, 1127, 10.1001/jama.295.10.1127

Drury, 2008, Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America, J. Geophys. Res.-Atmos., 113, 1984, 10.1029/2007JD009573

Eeftens, 2012, Development of land use regression models for PM2. 5, PM2. 5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project, Environ. Sci. Technol., 46, 11195, 10.1021/es301948k

Engel-Cox, 2004, Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality, Atmos. Environ., 38, 2495, 10.1016/j.atmosenv.2004.01.039

Franchin, 2018, Airborne and ground-based observations of ammonium-nitrate-dominated aerosols in a shallow boundary layer during intense winter pollution episodes in northern Utah, Atmos. Chem. Phys., 18, 17259, 10.5194/acp-18-17259-2018

Gedeon, 1997, Data mining of inputs: analysing magnitude and functional measures, Int. J. Neural Syst., 8, 209, 10.1142/S0129065797000227

Gupta, 2009, Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach, J. Geophys. Res.-Atmos., 114, 10.1029/2008JD011497

Haykin, 2004, A comprehensive foundation, Neural Netw., 2

Herman, 1997, Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res., 102, 911

Hu, 2009, Spatial analysis of MODIS aerosol optical depth, PM 2.5, and chronic coronary heart disease, Int. J. Health Geogr., 8, 27, 10.1186/1476-072X-8-27

Hu, 2013, Estimating ground-level PM2. 5 concentrations in the southeastern US using geographically weighted regression, Environ. Res., 121, 1, 10.1016/j.envres.2012.11.003

Hu, 2017, Estimating PM2. 5 concentrations in the conterminous United States using the random forest approach, Environ. Sci. Technol., 51, 6936, 10.1021/acs.est.7b01210

Huang, 2018, Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain, Environ. Pollut., 242, 675, 10.1016/j.envpol.2018.07.016

Just, 2015, Using high-resolution satellite aerosol optical depth to estimate daily PM2. 5 geographical distribution in Mexico City, Environ. Sci. Technol., 49, 8576, 10.1021/acs.est.5b00859

Kalnay, 1996, The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437, 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kelly, 2018, Modeling NH4NO3 over the San Joaquin Valley during the 2013 DISCOVER-AQ campaign, J. Geophys. Res.-Atmos., 123, 4727, 10.1029/2018JD028290

Kelly, 2019, A system for developing and projecting PM2.5 spatial fields to correspond to just meeting national ambient air quality standards, Atmos. Environ.: X., 2

King, 1992, Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS), IEEE Trans. Geosci. Remote Sens., 30, 2, 10.1109/36.124212

Kloog, 2011, Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements, Atmos. Environ., 45, 6267, 10.1016/j.atmosenv.2011.08.066

Kloog, 2013, Long-and short-term exposure to PM2. 5 and mortality: using novel exposure models, Epidimiology, 24, 555, 10.1097/EDE.0b013e318294beaa

Kloog, 2014, A new hybrid spatio-temporal model for estimating daily multi-year PM 2.5 concentrations across northeastern USA using high resolution aerosol optical depth data, Atmos. Environ., 95, 581, 10.1016/j.atmosenv.2014.07.014

Kloog, 2014, Short term effects of particle exposure on hospital admissions in the Mid-Atlantic states: a population estimate, PLoS One, 9, 10.1371/journal.pone.0088578

Kloog, 2015, Estimating daily PM2. 5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data, Atmos. Environ., 122, 409, 10.1016/j.atmosenv.2015.10.004

Koelemeijer, 2006, Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe, Atmos. Environ., 40, 5304, 10.1016/j.atmosenv.2006.04.044

Larkin, 2017, Global land use regression model for nitrogen dioxide air pollution, Environ. Sci. Technol., 51, 6957, 10.1021/acs.est.7b01148

Lee, 2016, Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011, J. Expo. Sci. Environ. Epidemiol., 26, 377, 10.1038/jes.2015.41

Lippmann, 2000, Association of particulate matter components with daily mortality and morbidity in urban populations, Res. Rep. Health Eff. Inst., 95, 5

Liu, 2004, Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States, J. Geophys. Res.-Atmos., 109, 10.1029/2004JD005025

Liu, 2009, Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information, Environ. Health Perspect., 117, 886, 10.1289/ehp.0800123

Liu, 2012, A statistical model to evaluate the effectiveness of PM2. 5 emissions control during the Beijing 2008 Olympic Games, Environ. Int., 44, 100, 10.1016/j.envint.2012.02.003

Lyapustin, 2011, Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, J. Geophys. Res.-Atmos., 116, 1984

Ma, 2014, Estimating ground-level PM2.5 in China using satellite remote sensing, Environ. Sci. Technol., 48, 7436, 10.1021/es5009399

Maher, 2016, Magnetite pollution nanoparticles in the human brain, Proc. Natl. Acad. Sci., 113, 10797, 10.1073/pnas.1605941113

Marais, 2016, Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls, Atmos. Chem. Phys., 16, 1603, 10.5194/acp-16-1603-2016

Paciorek, 2008, Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5, Environ. Sci. Technol., 42, 5800, 10.1021/es703181j

Pope, 2003, Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease, Circulation, 109, 71, 10.1161/01.CIR.0000108927.80044.7F

Rifkin, 2004, In defense of one-vs-all classification, J. Mach. Learn. Res., 5, 101

Salomonson, 1989, MODIS: advanced facility instrument for studies of the Earth as a system, IEEE Trans. Geosci. Remote Sens., 27, 145, 10.1109/36.20292

Sayer, 2013, Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data, J. Geophys. Res.-Atmos., 118, 7864, 10.1002/jgrd.50600

Seaton, 1995, Particulate air pollution and acute health effects, Lancet, 345, 176, 10.1016/S0140-6736(95)90173-6

Sharkey, 1996, Field measurements of isoprene emission from trees in response to temperature and light, Tree Physiol., 16, 649, 10.1093/treephys/16.7.649

Sharkey, 2008, Isoprene emission from plants: why and how, Ann. Bot., 101, 5, 10.1093/aob/mcm240

Shi, 2016, Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study, Environ. Health Perspect., 124, 46, 10.1289/ehp.1409111

Son, 2018, Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters, Sci. Total Environ., 639, 40, 10.1016/j.scitotenv.2018.05.144

Song, 2014, A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China, Remote Sens. Environ., 154, 1, 10.1016/j.rse.2014.08.008

Sotomayor-Olmedo, 2013, Forecast urban air pollution in Mexico City by using support vector machines: a kernel performance approach, Int. J. Internet Sci., 3, 126

Spiegelman, 2016, Evaluating public health interventions: 4. The nurses' health study and methods for eliminating Bias attributable to measurement error and misclassification, Am. J. Public Health, 106, 1563, 10.2105/AJPH.2016.303377

Strawa, 2013, Improving retrievals of regional fine particulate matter concentrations from Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) multisatellite observations, J. Air Waste Manage. Assoc., 63, 1434, 10.1080/10962247.2013.822838

Suleiman, 2016, Hybrid neural networks and boosted regression tree models for predicting roadside particulate matter, Environ. Model. Assess., 21, 731, 10.1007/s10666-016-9507-5

Torres, 1998, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis, J. Geophys. Res.-Atmos., 103, 17099, 10.1029/98JD00900

van Donkelaar, 2015, High-resolution satellite-derived PM2.5 from optimal estimation and geographically weighted regression over North America, Environ. Sci. Technol., 49, 10482, 10.1021/acs.est.5b02076

Vermote, 2015

Wang, 2003, Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies, Geophys. Res. Lett., 30, 10.1029/2003GL018174

Wang, 2017, A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting, Atmos. Pollut. Res., 8, 850, 10.1016/j.apr.2017.01.003

Weizhen, 2014, Using support vector regression to predict PM10 and PM2.5

Wu, Y., J. Guo, X. Zhang and X. Li (2011). Correlation between PM concentrations and aerosol optical depth in eastern China based on BP neural networks. Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, Ieee.

Xie, 2015, Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD, Environ. Sci. Technol., 49, 12280, 10.1021/acs.est.5b01413

Yang, 2018, Ambient fine particulate pollution associated with diabetes mellitus among the elderly aged 50 years and older in China, Environ. Pollut., 243, 815, 10.1016/j.envpol.2018.09.056

You, 2016, National-scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD, Remote Sens., 8, 184, 10.3390/rs8030184

Zhan, 2017, Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm, Atmos. Environ., 155, 129, 10.1016/j.atmosenv.2017.02.023

Zhang, 2018, Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States, Proc. Natl. Acad. Sci., 115, 2038, 10.1073/pnas.1717513115

Zheng, 2016, Estimating ground-level PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements, Atmos. Environ., 124, 232, 10.1016/j.atmosenv.2015.06.046

Zou, 2016, High-resolution satellite mapping of fine particulates based on geographically weighted regression, IEEE Geosci. Remote Sens. Lett., 13, 495, 10.1109/LGRS.2016.2520480