An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution
Tóm tắt
Từ khóa
Tài liệu tham khảo
Appel, 2017, Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703, 10.5194/gmd-10-1703-2017
Bai, 2016, A geographically and temporally weighted regression model for ground-level PM2. 5 estimation from satellite-derived 500 m resolution AOD, Remote Sens., 8, 262, 10.3390/rs8030262
Beloconi, 2016, Estimating urban PM10 and PM2. 5 concentrations, based on synergistic MERIS/AATSR aerosol observations, land cover and morphology data, Remote Sens. Environ., 172, 148, 10.1016/j.rse.2015.10.017
Bergstrom, 2007, Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937, 10.5194/acp-7-5937-2007
Bey, 2001, Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation, J. Geophys. Res., 106, 10.1029/2001JD000807
Bishop, 1995
Bishop, 2006
Brokamp, 2017, Exposure assessment models for elemental components of particulate matter in an urban environment: a comparison of regression and random forest approaches, Atmos. Environ., 151, 1, 10.1016/j.atmosenv.2016.11.066
Buchard, 2017, The MERRA-2 aerosol reanalysis, 1980 onward. Part II: evaluation and case studies, J. Clim., 30, 6851, 10.1175/JCLI-D-16-0613.1
Chen, 2018
Chudnovsky, 2012, Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES), J. Air Waste Manage. Assoc., 62, 1022, 10.1080/10962247.2012.695321
Cohen, 2017, Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet, 389, 1907, 10.1016/S0140-6736(17)30505-6
de Hoogh, 2018, Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland, Environ. Pollut., 233, 1147, 10.1016/j.envpol.2017.10.025
de Prado Bert, 2018, The effects of air pollution on the brain: a review of studies interfacing environmental epidemiology and neuroimaging, Cur. Environ. Health Rep., 5, 351, 10.1007/s40572-018-0209-9
DeWinter, 2018, A national-scale review of air pollutant concentrations measured in the US near-road monitoring network during 2014 and 2015, Atmos. Environ., 183, 94, 10.1016/j.atmosenv.2018.04.003
Di, 2016, Assessing PM2. 5 exposures with high spatiotemporal resolution across the continental United States, Environ. Sci. Technol., 50, 4712, 10.1021/acs.est.5b06121
Di, 2017, Air pollution and mortality in the Medicare population, N. Engl. J. Med., 376, 2513, 10.1056/NEJMoa1702747
Dominici, 2006, Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases, Jama, 295, 1127, 10.1001/jama.295.10.1127
Drury, 2008, Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America, J. Geophys. Res.-Atmos., 113, 1984, 10.1029/2007JD009573
Eeftens, 2012, Development of land use regression models for PM2. 5, PM2. 5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project, Environ. Sci. Technol., 46, 11195, 10.1021/es301948k
Engel-Cox, 2004, Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality, Atmos. Environ., 38, 2495, 10.1016/j.atmosenv.2004.01.039
Franchin, 2018, Airborne and ground-based observations of ammonium-nitrate-dominated aerosols in a shallow boundary layer during intense winter pollution episodes in northern Utah, Atmos. Chem. Phys., 18, 17259, 10.5194/acp-18-17259-2018
Gedeon, 1997, Data mining of inputs: analysing magnitude and functional measures, Int. J. Neural Syst., 8, 209, 10.1142/S0129065797000227
Gupta, 2009, Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach, J. Geophys. Res.-Atmos., 114, 10.1029/2008JD011497
Haykin, 2004, A comprehensive foundation, Neural Netw., 2
Herman, 1997, Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res., 102, 911
Hu, 2009, Spatial analysis of MODIS aerosol optical depth, PM 2.5, and chronic coronary heart disease, Int. J. Health Geogr., 8, 27, 10.1186/1476-072X-8-27
Hu, 2013, Estimating ground-level PM2. 5 concentrations in the southeastern US using geographically weighted regression, Environ. Res., 121, 1, 10.1016/j.envres.2012.11.003
Hu, 2017, Estimating PM2. 5 concentrations in the conterminous United States using the random forest approach, Environ. Sci. Technol., 51, 6936, 10.1021/acs.est.7b01210
Huang, 2018, Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain, Environ. Pollut., 242, 675, 10.1016/j.envpol.2018.07.016
Just, 2015, Using high-resolution satellite aerosol optical depth to estimate daily PM2. 5 geographical distribution in Mexico City, Environ. Sci. Technol., 49, 8576, 10.1021/acs.est.5b00859
Kalnay, 1996, The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437, 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kelly, 2018, Modeling NH4NO3 over the San Joaquin Valley during the 2013 DISCOVER-AQ campaign, J. Geophys. Res.-Atmos., 123, 4727, 10.1029/2018JD028290
Kelly, 2019, A system for developing and projecting PM2.5 spatial fields to correspond to just meeting national ambient air quality standards, Atmos. Environ.: X., 2
King, 1992, Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS), IEEE Trans. Geosci. Remote Sens., 30, 2, 10.1109/36.124212
Kloog, 2011, Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements, Atmos. Environ., 45, 6267, 10.1016/j.atmosenv.2011.08.066
Kloog, 2013, Long-and short-term exposure to PM2. 5 and mortality: using novel exposure models, Epidimiology, 24, 555, 10.1097/EDE.0b013e318294beaa
Kloog, 2014, A new hybrid spatio-temporal model for estimating daily multi-year PM 2.5 concentrations across northeastern USA using high resolution aerosol optical depth data, Atmos. Environ., 95, 581, 10.1016/j.atmosenv.2014.07.014
Kloog, 2014, Short term effects of particle exposure on hospital admissions in the Mid-Atlantic states: a population estimate, PLoS One, 9, 10.1371/journal.pone.0088578
Kloog, 2015, Estimating daily PM2. 5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data, Atmos. Environ., 122, 409, 10.1016/j.atmosenv.2015.10.004
Koelemeijer, 2006, Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe, Atmos. Environ., 40, 5304, 10.1016/j.atmosenv.2006.04.044
Larkin, 2017, Global land use regression model for nitrogen dioxide air pollution, Environ. Sci. Technol., 51, 6957, 10.1021/acs.est.7b01148
Lee, 2016, Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011, J. Expo. Sci. Environ. Epidemiol., 26, 377, 10.1038/jes.2015.41
Lippmann, 2000, Association of particulate matter components with daily mortality and morbidity in urban populations, Res. Rep. Health Eff. Inst., 95, 5
Liu, 2004, Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States, J. Geophys. Res.-Atmos., 109, 10.1029/2004JD005025
Liu, 2009, Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information, Environ. Health Perspect., 117, 886, 10.1289/ehp.0800123
Liu, 2012, A statistical model to evaluate the effectiveness of PM2. 5 emissions control during the Beijing 2008 Olympic Games, Environ. Int., 44, 100, 10.1016/j.envint.2012.02.003
Lyapustin, 2011, Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, J. Geophys. Res.-Atmos., 116, 1984
Ma, 2014, Estimating ground-level PM2.5 in China using satellite remote sensing, Environ. Sci. Technol., 48, 7436, 10.1021/es5009399
Maher, 2016, Magnetite pollution nanoparticles in the human brain, Proc. Natl. Acad. Sci., 113, 10797, 10.1073/pnas.1605941113
Marais, 2016, Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls, Atmos. Chem. Phys., 16, 1603, 10.5194/acp-16-1603-2016
Paciorek, 2008, Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5, Environ. Sci. Technol., 42, 5800, 10.1021/es703181j
Pope, 2003, Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease, Circulation, 109, 71, 10.1161/01.CIR.0000108927.80044.7F
Rifkin, 2004, In defense of one-vs-all classification, J. Mach. Learn. Res., 5, 101
Salomonson, 1989, MODIS: advanced facility instrument for studies of the Earth as a system, IEEE Trans. Geosci. Remote Sens., 27, 145, 10.1109/36.20292
Sayer, 2013, Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data, J. Geophys. Res.-Atmos., 118, 7864, 10.1002/jgrd.50600
Seaton, 1995, Particulate air pollution and acute health effects, Lancet, 345, 176, 10.1016/S0140-6736(95)90173-6
Sharkey, 1996, Field measurements of isoprene emission from trees in response to temperature and light, Tree Physiol., 16, 649, 10.1093/treephys/16.7.649
Shi, 2016, Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study, Environ. Health Perspect., 124, 46, 10.1289/ehp.1409111
Son, 2018, Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters, Sci. Total Environ., 639, 40, 10.1016/j.scitotenv.2018.05.144
Song, 2014, A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China, Remote Sens. Environ., 154, 1, 10.1016/j.rse.2014.08.008
Sotomayor-Olmedo, 2013, Forecast urban air pollution in Mexico City by using support vector machines: a kernel performance approach, Int. J. Internet Sci., 3, 126
Spiegelman, 2016, Evaluating public health interventions: 4. The nurses' health study and methods for eliminating Bias attributable to measurement error and misclassification, Am. J. Public Health, 106, 1563, 10.2105/AJPH.2016.303377
Strawa, 2013, Improving retrievals of regional fine particulate matter concentrations from Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) multisatellite observations, J. Air Waste Manage. Assoc., 63, 1434, 10.1080/10962247.2013.822838
Suleiman, 2016, Hybrid neural networks and boosted regression tree models for predicting roadside particulate matter, Environ. Model. Assess., 21, 731, 10.1007/s10666-016-9507-5
Torres, 1998, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis, J. Geophys. Res.-Atmos., 103, 17099, 10.1029/98JD00900
van Donkelaar, 2015, High-resolution satellite-derived PM2.5 from optimal estimation and geographically weighted regression over North America, Environ. Sci. Technol., 49, 10482, 10.1021/acs.est.5b02076
Vermote, 2015
Wang, 2003, Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies, Geophys. Res. Lett., 30, 10.1029/2003GL018174
Wang, 2017, A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting, Atmos. Pollut. Res., 8, 850, 10.1016/j.apr.2017.01.003
Weizhen, 2014, Using support vector regression to predict PM10 and PM2.5
Wu, Y., J. Guo, X. Zhang and X. Li (2011). Correlation between PM concentrations and aerosol optical depth in eastern China based on BP neural networks. Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, Ieee.
Xie, 2015, Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD, Environ. Sci. Technol., 49, 12280, 10.1021/acs.est.5b01413
Yang, 2018, Ambient fine particulate pollution associated with diabetes mellitus among the elderly aged 50 years and older in China, Environ. Pollut., 243, 815, 10.1016/j.envpol.2018.09.056
You, 2016, National-scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD, Remote Sens., 8, 184, 10.3390/rs8030184
Zhan, 2017, Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm, Atmos. Environ., 155, 129, 10.1016/j.atmosenv.2017.02.023
Zhang, 2018, Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States, Proc. Natl. Acad. Sci., 115, 2038, 10.1073/pnas.1717513115
Zheng, 2016, Estimating ground-level PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements, Atmos. Environ., 124, 232, 10.1016/j.atmosenv.2015.06.046