An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K<sub>2</sub>O–Na<sub>2</sub>O–CaO–MgO–MnO–FeO–Fe<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub>–TiO<sub>2</sub>–SiO<sub>2</sub>–C–H<sub>2</sub>–O<sub>2</sub>

Journal of Metamorphic Geology - Tập 8 Số 1 - Trang 89-124 - 1990
T. J. B. Holland1, Roger Powell2
1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
2Department of Geology, University of Melbourne, Parkville, Victoria 3052, Australia

Tóm tắt

We present, as a progress report, a revised and much enlarged version of the thermodynamic dataset given earlier (Holland & Powell, 1985). This new set includes data for 123 mineral and fluid end‐members made consistent with over 200 P–T–XCO2fO2 phase equilibrium experiments. Several improvements and advances have been made, in addition to the increased coverage of mineral phases: the data are now presented in three groups ranked according to reliability; a large number of iron‐bearing phases has been included through experimental and, in some cases, natural Fe:Mg partitioning data; H2O and CO2 contents of cordierites are accounted for with the solution model of Kurepin (1985); simple Landau theory is used to model lambda anomalies in heat capacity and the Al/Si order–disorder behaviour in some silicates, and Tschermak‐substituted end‐members have been derived for iron and magnesium end‐members of chlorite, talc, muscovite, biotite, pyroxene and amphibole.For the subset of data which overlap those of Berman (1988), it is encouraging to find both (1) very substantial agreement between the two sets of thermodynamic data and (2) that the two sets reproduce the phase equilibrium experimental brackets to a very similar degree of accuracy. The main differences in the two datasets involve size (123 as compared to 67 end‐members), the methods used in data reduction (least squares as compared to linear programming), and the provision for estimation of uncertainties with this dataset. For calculations on mineral assemblages in rocks, we aim to maximize the information available from the dataset, by combining the equilibria from all the reactions which can be written between the end‐members in the minerals. For phase diagram calculations, we calculate the compositions of complex solid solutions (together with P and T) involved in invariant, univariant and divariant assemblages. Moreover we strongly believe in attempting to assess the probable uncertainties in calculated equilibria and hence provide a framework for performing simple error propagation in all calculations in thermocalc, the computer program we offer for an effective use of the dataset and the calculation methods we advocate.

Từ khóa


Tài liệu tham khảo

10.1007/BF00373328

10.1093/petrology/23.2.215

10.1093/petrology/28.2.389

10.1016/0016-7037(85)90061-4

10.2475/ajs.277.5.585

10.2475/ajs.261.2.129

10.1002/0471725153

10.1093/petrology/29.2.445

10.1007/BF00379451

Berman R. G., 1987, Reviews in Mineralogy, 405

10.1130/MEM97-p97

10.1093/petrology/14.3.415

10.1093/petrology/11.2.337

10.1029/JB087iB08p07073

10.1007/BF00371195

10.1093/petrology/27.5.1143

10.1016/0012-821X(80)90098-9

10.1093/petrology/27.5.1025

Bohlen S. R., 1983, Thermodynamics and phase equilibrium of ferrosilite: Potential oxygen barometer in mantle rocks, EOS (Transactions of the American Geophysical Union), 64, 350

10.1007/BF00373079

Bohlen S. R., 1983, Experimental investigations and geological applications of equilibria in the system FeO–TiO2–Al2O3–SiO2–H2O, American Mineralogist, 68, 1049

Boyd F. R., 1959, Researches in Geochemistry, 1

10.1016/0016-7037(84)90198-4

10.2113/gsecongeo.77.4.764

10.1093/petrology/10.1.56

Carman J. H., 1974, Synthetic sodium phlogopite and its hydrates: Stabilities, properties and mineralogic implications, American Mineralogist, 59, 261

Carman J. H., 1983, Experimental studies on glaucophane stability, American Journal of Science, 283, 414

10.1007/978-94-009-2891-6_9

10.1016/0016-7037(85)90310-2

10.1016/0016-7037(75)90150-7

10.1016/0016-7037(78)90267-3

10.1016/0016-7037(81)90289-1

10.1016/0016-7037(83)90266-1

10.1007/BF00385781

10.1007/BF00373759

Chatterjee N. D., 1974, Synthesis and upper thermal stability limit of 2M‐margarite, CaAl2Al2Si2O10(OH)2, Schweizerische Mineralogische und Petrologische Mitteilungen, 54, 753

Chatterjee N. D., 1976, Margarite stability and compatibility relations in the system CaO–Al2O3–SiO2–H2O as a pressure‐temperature indicator, American Mineralogist, 61, 699

10.1007/BF00418612

10.1007/BF00371407

Chernosky J. V., 1973, The stability of chrysotile, Mg3Si2O5(OH)4, and the free energy of formation of talc, Mg3Si4O10(OH)2, Geological Society of American Abstracts with Programs, 5, 575

Chernosky J. V., 1974, The upper stability of clinochlore at low pressure and the free energy of formation of Mg‐cordierite, American Mineralogist, 59, 496

Chernosky J. V., 1976, Gibbs free energy of enstatite, clinochlore and hydrous Mg‐cordierite evaluated from phase equilibrium data, EOS (Transactions of the American Geophysical Union), 57, 1020

Chernosky J. V., 1976, The stability of anthophyllite–a re‐evaluation based on new experimental data, American Mineralogist, 61, 1145

Chernosky J. V., 1978, The stability of clinochlore and quartz at low pressure, American Mineralogist, 63, 73

Chernosky J. V., 1982, The stability of clinochrysotile, Canadian Mineralogist, 20, 19

Chernosky J. V., 1979, The stability of anthophyllite in the presence of quartz, American Mineralogist, 84, 294

Chernosky J. V., 1986, The stability of clinochlore in mixed volatile, CO2–H2O fluids, EOS (Transactions of the American Geophysical Union), 67, 407

Chernosky J. V., 1986, Experimental reversal of the equilibrium: Clinochlore + 2 magnesite = 3 forsterite + spinel + 2CO2+ 4H2O, EOS (Transactions of the American Geophysical Union), 67, 1279

Chernosky J. V., 1985, Equilibria in the system MgO–SiO2–H2O: experimental determination of the stability of Mg‐anthophyllite, American Mineralogist, 70, 223

10.1093/petrology/14.2.185

10.1007/BF00381295

Chopin C., 1983, Magnesiocarpholite and magnesiochloritoid: Two index minerals of pelitic blueschists and their preliminary phase relations in the model system MgO–Al2O3–SiO2–H2O, American Journal of Science, 283, 72

Colville P., 1966, Relationships between cell parameters and chemical compositions of monoclinic amphiboles, American Mineralogist, 51, 1727

Conolly J. A. D., 1985, Experimental and thermodynamic analysis of prehnite, EOS (Transactions of the American Geophysical Union), 66, 388

10.2475/ajs.263.3.262

10.1007/BF00372158

10.2475/ajs.280.3.265

10.1016/0016-7037(81)90165-4

Dutrow B. L., 1986, Upper thermal stability of staurolite + quartz at medium pressures: A reinvestigation, Terra Cognita, 6, 214

10.1016/0016-7037(81)90130-7

10.2475/ajs.264.1.37

Essene E. J., 1980, Thermodynamic properties and phase equilibria for fayalite, Geological Society of American Abstracts with Programs, 12, 422

Fawcett J. J., 1966, Phase relationships of chlorites in the system MgO–Al2O3–SiO2–H2O, American Mineralogist, 61, 303

10.1007/BF00372150

10.1063/1.327451

10.1007/BF00308271

10.1007/BF00371325

10.1007/BF00376633

10.2475/ajs.271.1.37

10.2475/ajs.267.8.910

10.1093/petrology/13.2.335

10.1093/petrology/9.3.444

10.1016/0016-7037(84)90304-1

10.1007/BF00381556

10.1007/BF00371708

Goldsmith J. R., 1980, The melting and breakdown reactions of anorthite at high pressures and temperatures, American Mineralogist, 65, 272

Goldsmith J. R., 1981, The join CaAl2Si2O8–H2O (anorthite–water) at elevated pressures and temperatures, American Mineralogist, 66, 1183

10.1029/JB085iB12p06949

10.1086/626715

Goldsmith J. R., 1977, Scapolite–plagioclase stability relations at high pressures and temperatures in the system NaAlSi3O8–CaAl2Si2O8–CaCO3–CaSO4, American Mineralogist, 62, 1063

10.1086/626865

10.2475/ajs.268.3.225

10.1016/0024-4937(82)90017-2

Greenwood H. J., 1967, Wollastonite: Stability in H2O–CO2 mixtures and occurrence in a contact‐metamorphic aureole near Salmo, British Columbia, Canada, American Mineralogist, 52, 1669

Greenwood H. J., 1967, Researches in Geochemistry II, 542

10.1016/0021-9614(74)90230-4

Guiraud M., 1989, Calculated mineral equilibria in the greenschist–blueschist–eclogite facies in Na2O–FeO–MgO–Al2O3–SiO2–H2O, Contributions to Mineralogy and Petrology

Haas H., 1972, Diaspore‐corundum equilibrium determined by epitaxis of diaspore on corundum, American Mineralogist, 57, 1375

10.2475/ajs.273.6.449

10.2475/ajs.257.9.656

10.2475/ajs.253.4.209

10.2475/ajs.254.4.239

10.2475/ajs.254.8.468

10.1007/BF01187140

10.1144/GSL.SP.1979.008.01.36

Haselton H. T., 1982, Low temperature heat‐capacity measurements on synthetic CaAl2SiO6 pyroxene, EOS (Transactions of the American Geophysical Union), 63, 467

Haselton H. T., 1984, Low temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene, American Mineralogist, 69, 481

10.1016/0016-7037(87)90270-5

10.1029/GL005i009p00753

Hays J. F., 1967, Lime‐alumina‐silica, Carnegie Institute of Washington Yearbook, 65, 234

Hazen R. M., 1977, Effects of temperature and pressure on the crystal structure of ferromagnesian olivine, American Mineralogist, 62, 286

Hazen R. M., 1978, The crystal structures and compressibilities of layer minerals at high pressure. II. Phlogopite and chlorite, American Mineralogist, 63, 293

Heinrich W., 1980, Die obere Stabilitätsgrenze von Lawsonit plus Albit bzw Jadeit, Fortschritte der Mineralogie, 58, 49

Helgeson H. C., 1978, Summary and critique of the thermodynamic properties of rock‐forming minerals, American Journal of Science, 278, 229

Hemingway B. S., 1987, Quartz: Heat capacities from 340 to 1000 K and revised values for the thermodynamic properties, American Mineralogist, 72, 273

Hemingway B. S., 1986, Akermanite: Phase transitions in heat capacity and thermal expansion, and revised thermodynamic data, Canadian Mineralogist, 24, 425

Hemingway B. S., 1984, Heat capacity and thermodynamic functions for gehlenite and staurolite: with comments on the Schottky anomaly in the heat capacity of Staurolite, American Mineralogist, 69, 307

Henderson C. E., 1983, Thermodynamics and phase equilibria of clinochlore (Mg5Al)(Si3Al)10(OH)8, EOS (Transactions of the American Geophysical Union), 64, 466

10.1007/BF01132333

Hewitt D. A., 1973, Stability of the assemblage muscovite–calcite–quartz, American Mineralogist, 58, 785

Hewitt D. A., 1975, Stability of the assemblage phlogopite–calcite–quartz, American Mineralogist, 60, 391

Hewitt D. A., 1975, Physical properties of some synthetic Fe–Mg–Al trioctahedral biotites, American Mineralogist, 60, 854

10.2113/gsecongeo.77.4.798

10.1007/BF00373769

10.2475/ajs.271.2.97

Holdaway M. J., 1987, H content of staurolite as determined by H extraction line and ion microprobe, American Mineralogist, 71, 1135

10.1007/BF00398778

10.1007/BF00371551

Holland T. J. B., 1980, The reaction albite = jadeite + quartz determined experimentally in the range 600–1200 °C, American Mineralogist, 65, 129

Holland T. J. B., 1984, Stability relations of ortho‐ and clinozoisite, NERC Progress in Experimental Petrology, Progress Report, 6, 185

10.1007/BF00399373

Holland T. J. B., 1989, the dependence of entropy on volume for silicate and oxide minerals: a review and a predictive model, American Mineralogist, 74, 5

10.1007/BF00372259

10.1111/j.1525-1314.1985.tb00325.x

Holm J. L., 1966, The thermodynamic properties of the aluminum silicates, American Mineralogist, 51, 1608

10.1007/BF00383105

10.1007/BF00390149

10.1093/petrology/9.1.40

Huang W. L., 1975, Melting and subsolidus phase relationships for CaSiO3 to 35 kilobars pressure, American Mineralogist, 60, 213

Huckenholz H. G., 1975, Grossularite, its solidus and liquidus relations in the system CaO–Al2O3–SiO2–H2O up to 10kbars, Neues Jahrbuch für Mineralogie Abhandlungen, 124, 1

Huckenholz H. G., 1971, Andradite stability relations in the CaSiO3–Fe2O3 join up to 30 kb, Neues Jahrbuch für Mineralogie Abhandlungen, 114, 246

Huebner J. S., 1969, Stability relations of rhodachrosite in the system manganese–carbon–oxygen, American Mineralogist, 54, 457

Huebner J. S., 1968, Rhodachrosite decarbonation in the system MnO–SiO2–CO2, Geological Society of America Special Publication, 121, 144

10.1016/0016-7037(77)90236-8

10.2475/ajs.277.3.313

10.1016/0016-7037(75)90183-0

Ivaldi G., 1988, Crystal structure at 25 and 700° of magnesiochloritoid from a high pressure assemblage (Monte Rosa), American Mineralogist, 73, 358

Jacobs G. K., 1979, Experimental and thermodynamic analysis of decarbonation reactions and the high temperature heat capacity of calcite, EOS (Transactions of the American Geophysical Union), 60, 406

Jacobs G. K., 1981, Devolatilization equilibria in H2O–CO2 and H2O–CO2–NaCl fluids: an experimental and thermodynamic evaluation at elevated pressures and temperatures, American Mineralogist, 66, 1135

10.1007/BF00636520

10.1007/BF00371206

10.1007/BF00376758

Jenkins D. M., 1986, Phase equilibria and crystallochemical properties of Mg‐chlorite, American Mineralogist, 71, 924

10.1038/304622a0

10.1007/BF00389413

10.2475/ajs.267.9.1083

10.1007/BF00375486

10.1007/BF00373672

10.1007/BF00373389

10.1007/BF00371390

10.1016/0016-7037(83)90017-0

10.1029/JB081i014p02467

10.2475/ajs.266.3.204

Kerrick D. M., 1984, The andalusite–sillimanite equilibrium revisited, Geological Society of America Abstracts with Programs, 16, 558

10.2475/ajs.264.3.223

Klein C., 1978, Regional metamorphism of Proterozoic iron‐formation, Labrador Trough, Canada, American Mineralogist, 63, 898

Ko H. C., 1977, Proceedings of the 7th Symposium on Thermophysical Properties. Washington D.C. (American Society of Mechanical Engineers), 392

Koziol A., 1986, Definition of anorthite = grossular + kyanite + quartz in the range 650–1250 °C, Geological Society of America Abstracts with Programs, 188, 661

10.1007/BF00376087

10.1016/0012-821X(73)90071-X

Kurepin V. A., 1985, H2O and CO2 contents of cordierite as an indicator of thermodynamic conditions of formation, Geochemistry International, 22, 148

Lager G. A., 1978, High‐temperature study of six olivines, American Mineralogist, 63, 365

Lange R. A., 1986, Phase transitions in leucite KAlSiO6, orthorhombic KAlSiO4, and their iron analogues (KFeSi2O6, KFeSiO4), American Mineralogist, 71, 937

Latard D., 1981, Experimental results bearing on the stability of the blueschist facies minerals deerite, howieite, and zussmanite, and their petrological significance, Bulletin Mineralogique, 104, 431, 10.3406/bulmi.1981.7490

10.1093/petrology/29.1.93

Levien L., 1981, High pressure crystal structure and compressibility of coesite, American Mineralogist, 66, 324

Lindsley D. H., 1966, P–T projection for part of the system kalsilite–silica, Carnegie Institute of Washington Yearbook, 65, 244

Lindsley D. H., 1981, The formation of pigeonite on the join hedenbergite‐ferrosilate at 11.5 kbar: experiments and a solution model, American Mineralogist, 66, 1175

Lindsley D. H., 1983, Pyroxene thermometry, American Mineralogist, 68, 477

Liou J. G., 1971, Synthesis and stability of prehnite, Ca2Al2Si3O10(OH)2, American Mineralogist, 56, 507

10.1093/petrology/14.3.381

Liou J. G., 1974, Stability relations of andradite–quartz in the system Ca–Fe–Si–O–H, American Mineralogist, 59, 1016

10.1093/petrology/8.3.372

10.1007/BF00372755

10.1111/j.1525-1314.1989.tb00619.x

Massonne H.‐J., 1986, High pressure syntheses and X‐ray properties of white micas in the system K2O–MgO–Al2O3–SiO2–H2O, Neues Jahrbuch für Mineralogie Abhandlungen, 153, 177

10.1007/BF00375235

Massonne H. J., 1981, Experimentelle der Reaktionskurve Chlorit + Quartz = Talk + Disthen im System MgO–Al2O3–SiO2–H2O, Fortschritte der Mineralogie, 59, 122

Matsui Y., 1974, Iron (II)‐magnesium exchange equilibrium between olivine and calcium‐free pyroxene over a temperature range 800 to 1300°, Bulletin de Societe de Mineralogie et de Cristallographie, 97, 122

10.2475/ajs.265.1.28

10.1007/BF00382182

10.1007/BF00373462

Metz G. W., 1983, The heat capacity and phase equilibria of almandine, EOS (Transactions of the American Geophysical Union), 64, 346

Miller Ch., 1986, Alpine high‐pressure metamorphism in the Eastern Alps, Schweitzerische Mineralogische und Petrologische Mitteilungen, 66, 139

10.1029/JB085iB12p06983

10.2475/ajs.286.7.540

Moecher D. P., 1985, S298 of an intermediate scapolite and phase equilibrium constraints on Al–Si disorder, EOS (Transactions of the American Geophysical Union), 66, 390

Moore P. B., 1972, Atomic arrangement of merwinite, Ca3Mg“SiO4”2, an unusual dense‐packed structure of geophysical interest, American Mineralogist, 57, 1355

10.1007/BF00371177

10.1086/627075

10.1126/science.151.3715.1222

10.2475/ajs.264.3.204

10.1086/627763

10.1029/JZ068i010p02967

10.1086/627255

Newton R. C., 1978, Volume behaviour of silicate solid solutions, American Mineralogist, 65, 733

10.1007/BF01164524

10.1111/j.1525-1314.1986.tb00338.x

10.1007/BF00373768

Nitsch K.‐H., 1974, Neue Erkentnisse zur Stabilitat fur Lawsonit, Fortschritte der Mineralogie, 51, 34

Nitsch K.‐H., 1981, Experimentelle bestimmung der gleichgewichtsdaten die reaktion Margarit + Quartz = Anorthit + Andalusit/Disthen + H2O, Fortschritte der Mineralogie, 59, 139

10.1007/BF00371872

10.2475/ajs.239.10.715

Perkins D., The stability of Mg‐rich garnet in the system CaO–MgO–Al2O3–SiO2 at 1000–1300 °C and high pressure, American Mineralogist, 68, 355

10.1007/BF00371508

10.1007/BF00371147

10.1016/0016-7037(80)90177-5

10.1007/BF00373344

10.1144/gsjgs.142.1.0029

10.1111/j.1525-1314.1985.tb00324.x

10.1111/j.1525-1314.1988.tb00415.x

Powell R., 1989, Calculated mineral equilibria in the pelite system. KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O), American Mineralogist

Puhan D., 1978, Experimental study of the reaction: dolomite + K‐feldspar + H2O = phlogopite + calcite + CO2 at the total gas pressure of 4000 and 6000 bars, Neues Jahrbuch für Mineralogie Monatschefte, 3, 110

10.1007/BF00399107

Rao B., 1979, Further data on the stability of staurolite + quartz, Neues Jahrbuch für Mineralogie Monat-shefte, 437

10.2475/ajs.277.1.1

10.1093/petrology/9.3.467

10.2475/ajs.266.7.515

10.2475/ajs.267.3.259

10.2475/ajs.255.2.115

Robie R. A., 1967, Selected X‐ray crystallographic data, molar volumes, and densities of minerals and related substances, United States Geological Survey Bulletin, 1248, 87

Robie R. A., 1982, Heat capacity and entropy of fayalite Fe2SiO4) between 5.1 and 383 K: Comparison of calorimetric and equilibrium values for the QFM buffer reaction, American Mineralogist, 67, 463

Robie R. A., 1984, Heat capacities and entropies of rhodachrosite (MnCO3) and siderite (FeCO3) between 5 and 600 K, American Mineralogist, 69, 349

Robie R. A., 1984, Heat capacities and entropies of phlogopite (KMg3[AlSi3O10](OH)2 and paragonite (NaAl2)[AlSi3O10](OH)2) between 5 and 900 K and estimates of the enthalpies and Gibbs free energies of formation, American Mineralogist, 69, 858

Robie R. A., 1979, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures, United States Geological Survey Bulletin, 1452, 456

Robie R. A., 1982, Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Ca2SiO4 between 5 and 380 K, American Mineralogist, 67, 470

10.1016/0016-7037(87)90271-7

Robinson P., 1982, Reviews in mineralogy, vol 9B, Amphiboles: petrology and experimental phase relations, 787

10.1007/BF01046834

10.1111/j.1525-1314.1986.tb00345.x

Scarfe C. M., 1966, An experimental study bearing on the absence of leucite in plutonic rocks, American Mineralogist, 51, 726

10.1093/petrology/21.3.441

Schramke J. A., 1982, The experimental determination of the brucite = periclase + H2O equilibrium with a new volumetric technique, American Mineralogist, 67, 269

Schreyer W., 1968, A reconnaissance study of the system MgO–Al2O3–SiO2–H2O at pressures between 10 and 25 kb, Carnegie Institute of Washington Yearbook, 66, 380

Schreyer W., 1969, High pressure phases in the system MgO–Al2O3–SiO2–H2O, American Journal of Science, 267, 407

10.1007/BF01166805

Seidel E., 1981, Fe‐Mg‐verteilung zurischen koexistierenden karpholithe und chloritoiden, Fortschritte der Mineralogie, 59, 180

10.1093/petrology/11.1.73

10.1007/BF00375041

10.1086/627958

10.1007/BF00405224

10.1007/BF00385779

10.1016/0016-7037(86)90321-2

Shmulovich K. J., 1974, Experimental study of phase equilibria in the system CaO–Al2O3–SiO2–CO2. (In Russian), Geokhimiya, 1272

10.1130/MEM97-p75

10.1086/627652

10.2475/ajs.275.2.143

10.1021/ja01658a009

10.1007/BF00374367

10.1007/BF00384648

Sueno S., 1976, Orthoferrosilite: High temperature crystal chemistry, American Mineralogist, 61, 38

Suwa Y., 1976, Stability of synthetic andradite at atmospheric pressure, American Mineralogist, 61, 26

Taylor L. A., 1970, Thermal expansion of pyrophyllite, Carnegie Institute of Washington Yearbook, 69, 193

10.2475/ajs.263.10.886

10.1007/BF00371870

10.2475/ajs.261.5.488

10.2475/ajs.263.1.64

Wechsler B. A., 1984, Crystal structure of ilmenite (FeTiO3) at high temperature and at high pressure, American Mineralogist, 69, 176

10.2475/ajs.272.8.735

10.2475/ajs.280.5.385

10.2475/ajs.281.7.922

Will T. M., 1989, Calculated greenschist facies mineral equilibria in the system CaO–MgO–FeO–Al2O3–SiO2–H2O–CO2, Contributions to Mineralogy and Petrology

Yin H.‐A., 1983, Displacement of equilibria of OH‐tremolite and F‐tremolite solid solution. I. Determination of the equilibrium P–T curve of OH‐tremolite, EOS (Transactions of the American Geophysical Union), 64, 347

Yoder H. S., 1968, Akermanite and related melilite‐bearing assemblages, Carnegie Institute of Washington Yearbook, 66, 471

Zharkov V. A., 1969, High temperature mineral equilibria in the system CaO–SiO2–CO2, Geochemistry International, 6, 853

Ziegenbein D., 1974, Wollastonitbildung aus Quartz und Calcit bei Pf = 2, 4, und 6 kb, Fortschritte der Mineralogie, 44, 77