Một đề xuất cải tiến về phân phối khóa lượng tử độc lập thiết bị bằng phương pháp trạng thái đánh lạc hướng

Quantum Information Processing - Tập 15 - Trang 3785-3797 - 2016
Qin Wang1,2,3, Chun-Hui Zhang1,2, Shunlong Luo4, Guang-Can Guo1,3
1Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing, China
2Key Lab of Broadband Wireless Communication and Sensor Network Technology, (Nanjing University of Posts and Telecommunications), Ministry of Education, Nanjing, China
3Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, China
4Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Bằng cách sử dụng các xung bao gồm ba cường độ, chúng tôi đề xuất một phương án cho việc phân phối khóa lượng tử độc lập thiết bị với các nguồn photon đơn được báo trước. Chúng tôi thực hiện một nghiên cứu so sánh giữa phương án này với phương án trạng thái đánh lạc hướng ba cường độ tiêu chuẩn sử dụng nguồn ánh sáng đồng nhất yếu hoặc nguồn photon đơn được báo trước. Lợi thế của phương án này được làm nổi bật qua các mô phỏng số: Nó có thể tiếp cận rất gần với trường hợp tiệm cận của việc sử dụng một số lượng vô hạn trạng thái đánh lạc hướng và thể hiện hiệu suất xuất sắc cả về khoảng cách truyền tải an toàn và tỷ lệ phát sinh khóa cuối cùng.

Từ khóa

#phân phối khóa lượng tử; độc lập thiết bị; trạng thái đánh lạc hướng; photon đơn; mô phỏng số

Tài liệu tham khảo

Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. IEEE, New York, pp. 175–179 (1984) Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145195 (2002) Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165 (2007) Dusek, M., Lütkenhaus, N., Hendrych, M.: Quantum cryptography. In: Wolf, E. (ed.) Progress in Optics VVVX. Elsevier, Amsterdam (2006) Scarani, V., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009) Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863 (1995) Yuen, H.P.: Quantum amplifiers, quantum duplicators and quantum cryptography. Quantum Semiclass. Opt. 8, 939 (1996) Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000) Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44 (2002) Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000) Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007) Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73 (2007) Zhao, Y., et al.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008) Lydersen, L., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686 (2010) Jain, N., et al.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011) Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41, 599 (2007) Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004) Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003) Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005) Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005) Wang, Q., et al.: Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys. Rev. Lett. 100, 090501 (2008) Mayers, D., Yao, A.C.: Quantum cryptography with imperfect apparatus. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, p. 503 (1998) Acín, A., Gisin, N., Masanes, L.: From Bells theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006) Acín, A., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007) Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010) Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304(R) (2011) Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012) Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012) Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013) Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013) Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement-device-independent quantum key distribution. Phys. Rev. A 88, 062339 (2013) Ma, X., Fung, C.-H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012) Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014) Shan, Y.Z., et al.: Measurement-device-independent quantum key distribution with a passive decoy-state method. Phys. Rev. A 90, 042334 (2014) Zhou, Y.H., Yu, Z.W., Wang, X.B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%. Phys. Rev. A 89, 052325 (2014) Yurke, B., Potasek, M.: Obtainment of thermal noise from a pure quantum state. Phys. Rev. A 36, 3464 (1987) Wang, Q., Wang, X.B., Guo, G.C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312 (2007) Wang, Q., Karlsson, A.: Performance enhancement of a decoy-state quantum key distribution using a conditionally prepared down-conversion source in the Poisson distribution. Phys. Rev. A 76, 014309 (2007) Ribordy, G., Brendel, J., Gautier, J.D., Gisin, N., Zbinden, H.: Long-distance entanglement-based quantum key distribution. Phys. Rev. A 63, 012309 (2000) Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007) Ma, X., Lo, H.K.: Quantum key distribution with triggering parametric down-conversion sources. New J. Phys. 10, 073018 (2008) Wang, Q., Wang, X.B., Björk, G., Karlsson, A.: Improved practical decoy state method in quantum key distribution with parametric downconversion source. Europhys. Lett. 79, 40001 (2007) Wang, Q., Wang, X.B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 4612 (2014) Zhang, C.H., Luo, S.L., Guo, G.C., Wang, Q.: Approaching the ideal quantum key distribution with two-intensity decoy states. Phys. Rev. A 92, 022332 (2015) Xu, F., Xu, He, Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014) Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)