An enhanced hydrogen corrosion by the Ti(C,N) inclusions in U-0.79 wt%Ti alloy
Tài liệu tham khảo
Beevers, 1967, Hydrogen embrittlement in uranium, J. Nucl. Mater., 23, 10, 10.1016/0022-3115(67)90125-0
Wood, 1994, Regarding the chemistry of metallic uranium stored in steel drums, J. Nucl. Mater., 209, 113, 10.1016/0022-3115(94)90253-4
Bazley, 2012, The influence of hydrogen pressure and reaction temperature on the initiation of uranium hydride sites, Solid State Ion., 211, 1, 10.1016/j.ssi.2012.01.010
Bloch, 1988, Effects of gas phase impurities on the topochemical-kinetic behaviour of uranium hydride development, J. Less Common. Met., 139, 371, 10.1016/0022-5088(88)90019-7
Bloch, 1997, Kinetics and mechanisms of metal hydrides formation—a review, J. Alloy. Comp., 253–254, 529, 10.1016/S0925-8388(96)03070-8
Knowles, 2015, The influence of vacuum annealing on the uranium–hydrogen reaction, J. Alloy. Comp., 645, S230, 10.1016/j.jallcom.2015.01.049
Scott, 2011, The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour, J. Hazard Mater., 195, 115, 10.1016/j.jhazmat.2011.08.011
Moreno, 1996, Physical discontinuities in the surface microstructure of uranium alloys as preferred sites for hydrogen attack, J. Nucl. Mater., 230, 181, 10.1016/0022-3115(96)00163-8
Hill, 2013, Filiform-mode hydride corrosion of uranium surfaces, J. Nucl. Mater., 442, 106, 10.1016/j.jnucmat.2013.08.049
Banos, 2018, The effect of work-hardening and thermal annealing on the early stages of the uranium-hydrogen corrosion reaction, Corros. Sci., 131, 147, 10.1016/j.corsci.2017.11.017
Arkush, 1996, Site related nucleation and growth of hydrides on uranium surfaces, J. Alloy. Comp., 244, 197, 10.1016/S0925-8388(96)02505-4
Siekhaus, 2015, Hydrogen accumulation in and at the perimeter of U–C–N–O inclusions in uranium – a SIMS analysis, J. Alloy. Comp., 645, S225, 10.1016/j.jallcom.2015.01.050
Jones, 2013, A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructure, Solid State Ion., 231, 81, 10.1016/j.ssi.2012.11.018
Gee, 1950, Recent developments in titanium, J. Electrochem. Soc., 97, 49, 10.1149/1.2777966
Liang, 2018, Removal of chloride impurities from titanium sponge by vacuum distillation, Vacuum, 152, 166, 10.1016/j.vacuum.2018.02.030
Roeper, 2005, Development of an environmentally friendly protective coating for the depleted uranium-0.75wt.% titanium alloy: Part I. Surface morphology and electrochemistry, Electrochim. Acta, 50, 3622, 10.1016/j.electacta.2005.01.021
Zhang, 2015, Influence of silicon impurity on the reaction of U-0.7wt.%Ti alloy and hydrogen, J. Alloy. Comp., 648, 122, 10.1016/j.jallcom.2015.06.241
Shi, 2013, Preferred hydride growth orientation of U−0.79wt.%Ti alloy with β+U2Ti microstructure, J. Nucl. Mater., 441, 1, 10.1016/j.jnucmat.2013.05.005
Nuspl, 2004, Qualitative and quantitative determination of micro-inclusions by automated SEM/EDX analysis, Anal. Bioanal. Chem., 379, 640, 10.1007/s00216-004-2528-y
Zheng, 2013, Mechanism of (Mg,Al,Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion, Corros. Sci., 67, 20, 10.1016/j.corsci.2012.09.044
Bytyqi, 2012, Analysis of inclusions in spring steel using scanning electron microscopy and Auger spectroscopy, Vacuum, 86, 648, 10.1016/j.vacuum.2011.09.015
Childs, 1995
Dawson, 1985, Quantitative auger electron analysis of titanium nitrides, Surf. Sci., 149, 105, 10.1016/S0039-6028(85)80016-9
Guillot, 2009, Quantification of a Ti(CxN1−x) based multilayer by auger electron spectroscopy, Appl. Surf. Sci., 256, 773, 10.1016/j.apsusc.2009.08.058
Lu, 2001, Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique, J. Alloy. Comp., 327, 248, 10.1016/S0925-8388(01)01461-X
Nakamura, 2008, Crystal structure of NaCl-type transition metal monocarbides MC (M=V, Ti, Nb, Ta, Hf, Zr), a neutron powder diffraction study, Mater. Sci. Eng., B., 148, 69, 10.1016/j.mseb.2007.09.040
Cheng, 2014, Long-range ordered structure of Ti-B-C-N in a TiB2-TiCxN1−xEutectic composite, J. Am. Ceram. Soc., 97, 2423, 10.1111/jace.13118
Condon, 1973, Kinetics of the uranium-hydrogen system, J. Chem. Phys., 59, 855, 10.1063/1.1680105
Ji, 2017, The effects of microstructure on the hydriding for 500 °C/2 h aged U-13at.%Nb alloy, J. Nucl. Mater., 488, 252, 10.1016/j.jnucmat.2017.03.014
Glascott, 2013, A model for the initiation of reaction sites during the uranium–hydrogen reaction assuming enhanced hydrogen transport through thin areas of surface oxide, Philos. Mag., 94, 221, 10.1080/14786435.2013.852286
Flitcroft, 2018, The critical role of hydrogen on the stability of oxy-hydroxyl defect clusters in uranium oxide, J. Mater. Chem. A., 6, 11362, 10.1039/C8TA02817F
Flitcroft, 2015, Hydride ion formation in stoichiometric UO2, Chem. Commun. (J. Chem. Soc. Sect. D), 51, 16209, 10.1039/C5CC04799D
Stewart, 1967, Effect of temperature and oxygen partial pressure on the oxidation of titanium carbide, J. Am. Ceram. Soc., 50, 176, 10.1111/j.1151-2916.1967.tb15076.x
Erickson, 1972
Harker, 2006, The influence of oxide thickness on the early stages of the massive uranium–hydrogen reaction, J. Alloy. Comp., 426, 106, 10.1016/j.jallcom.2006.02.014
Ben-Eliyahu, 1999, Hydride nucleation and formation of hydride growth centers on oxidized metallic surfaces—kinetic theory, J. Chem. Phys., 111, 6053, 10.1063/1.479903
Owen, 1966, A microscope study of the initiation of the hydrogen-uranium reaction, Corros. Sci., 6, 461, 10.1016/S0010-938X(66)80063-X
Harker, 2013, Altering the hydriding behaviour of uranium metal by induced oxide penetration around carbo-nitride inclusions, Solid State Ion., 241, 46, 10.1016/j.ssi.2013.04.004
Chen, 2017, Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel, Science, 355, 1196, 10.1126/science.aal2418
Malard, 2012, Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering, Mater. Sci. Eng. A, 536, 110, 10.1016/j.msea.2011.12.080