An enhanced hydrogen corrosion by the Ti(C,N) inclusions in U-0.79 wt%Ti alloy

Journal of Alloys and Compounds - Tập 820 - Trang 153124 - 2020
Fangfang Li, Lei Lu1, Xiandong Meng1, Hong Xiao1, Hefei Ji1, Rongguang Zeng1, Xinjian Zhang1, Xiaolin Wang1, Yawen Zhao1, Peng Shi1
1China Academy of Engineering Physics, Mianyang 621900, China

Tài liệu tham khảo

Beevers, 1967, Hydrogen embrittlement in uranium, J. Nucl. Mater., 23, 10, 10.1016/0022-3115(67)90125-0 Wood, 1994, Regarding the chemistry of metallic uranium stored in steel drums, J. Nucl. Mater., 209, 113, 10.1016/0022-3115(94)90253-4 Bazley, 2012, The influence of hydrogen pressure and reaction temperature on the initiation of uranium hydride sites, Solid State Ion., 211, 1, 10.1016/j.ssi.2012.01.010 Bloch, 1988, Effects of gas phase impurities on the topochemical-kinetic behaviour of uranium hydride development, J. Less Common. Met., 139, 371, 10.1016/0022-5088(88)90019-7 Bloch, 1997, Kinetics and mechanisms of metal hydrides formation—a review, J. Alloy. Comp., 253–254, 529, 10.1016/S0925-8388(96)03070-8 Knowles, 2015, The influence of vacuum annealing on the uranium–hydrogen reaction, J. Alloy. Comp., 645, S230, 10.1016/j.jallcom.2015.01.049 Scott, 2011, The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour, J. Hazard Mater., 195, 115, 10.1016/j.jhazmat.2011.08.011 Moreno, 1996, Physical discontinuities in the surface microstructure of uranium alloys as preferred sites for hydrogen attack, J. Nucl. Mater., 230, 181, 10.1016/0022-3115(96)00163-8 Hill, 2013, Filiform-mode hydride corrosion of uranium surfaces, J. Nucl. Mater., 442, 106, 10.1016/j.jnucmat.2013.08.049 Banos, 2018, The effect of work-hardening and thermal annealing on the early stages of the uranium-hydrogen corrosion reaction, Corros. Sci., 131, 147, 10.1016/j.corsci.2017.11.017 Arkush, 1996, Site related nucleation and growth of hydrides on uranium surfaces, J. Alloy. Comp., 244, 197, 10.1016/S0925-8388(96)02505-4 Siekhaus, 2015, Hydrogen accumulation in and at the perimeter of U–C–N–O inclusions in uranium – a SIMS analysis, J. Alloy. Comp., 645, S225, 10.1016/j.jallcom.2015.01.050 Jones, 2013, A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructure, Solid State Ion., 231, 81, 10.1016/j.ssi.2012.11.018 Gee, 1950, Recent developments in titanium, J. Electrochem. Soc., 97, 49, 10.1149/1.2777966 Liang, 2018, Removal of chloride impurities from titanium sponge by vacuum distillation, Vacuum, 152, 166, 10.1016/j.vacuum.2018.02.030 Roeper, 2005, Development of an environmentally friendly protective coating for the depleted uranium-0.75wt.% titanium alloy: Part I. Surface morphology and electrochemistry, Electrochim. Acta, 50, 3622, 10.1016/j.electacta.2005.01.021 Zhang, 2015, Influence of silicon impurity on the reaction of U-0.7wt.%Ti alloy and hydrogen, J. Alloy. Comp., 648, 122, 10.1016/j.jallcom.2015.06.241 Shi, 2013, Preferred hydride growth orientation of U−0.79wt.%Ti alloy with β+U2Ti microstructure, J. Nucl. Mater., 441, 1, 10.1016/j.jnucmat.2013.05.005 Nuspl, 2004, Qualitative and quantitative determination of micro-inclusions by automated SEM/EDX analysis, Anal. Bioanal. Chem., 379, 640, 10.1007/s00216-004-2528-y Zheng, 2013, Mechanism of (Mg,Al,Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion, Corros. Sci., 67, 20, 10.1016/j.corsci.2012.09.044 Bytyqi, 2012, Analysis of inclusions in spring steel using scanning electron microscopy and Auger spectroscopy, Vacuum, 86, 648, 10.1016/j.vacuum.2011.09.015 Childs, 1995 Dawson, 1985, Quantitative auger electron analysis of titanium nitrides, Surf. Sci., 149, 105, 10.1016/S0039-6028(85)80016-9 Guillot, 2009, Quantification of a Ti(CxN1−x) based multilayer by auger electron spectroscopy, Appl. Surf. Sci., 256, 773, 10.1016/j.apsusc.2009.08.058 Lu, 2001, Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique, J. Alloy. Comp., 327, 248, 10.1016/S0925-8388(01)01461-X Nakamura, 2008, Crystal structure of NaCl-type transition metal monocarbides MC (M=V, Ti, Nb, Ta, Hf, Zr), a neutron powder diffraction study, Mater. Sci. Eng., B., 148, 69, 10.1016/j.mseb.2007.09.040 Cheng, 2014, Long-range ordered structure of Ti-B-C-N in a TiB2-TiCxN1−xEutectic composite, J. Am. Ceram. Soc., 97, 2423, 10.1111/jace.13118 Condon, 1973, Kinetics of the uranium-hydrogen system, J. Chem. Phys., 59, 855, 10.1063/1.1680105 Ji, 2017, The effects of microstructure on the hydriding for 500 °C/2 h aged U-13at.%Nb alloy, J. Nucl. Mater., 488, 252, 10.1016/j.jnucmat.2017.03.014 Glascott, 2013, A model for the initiation of reaction sites during the uranium–hydrogen reaction assuming enhanced hydrogen transport through thin areas of surface oxide, Philos. Mag., 94, 221, 10.1080/14786435.2013.852286 Flitcroft, 2018, The critical role of hydrogen on the stability of oxy-hydroxyl defect clusters in uranium oxide, J. Mater. Chem. A., 6, 11362, 10.1039/C8TA02817F Flitcroft, 2015, Hydride ion formation in stoichiometric UO2, Chem. Commun. (J. Chem. Soc. Sect. D), 51, 16209, 10.1039/C5CC04799D Stewart, 1967, Effect of temperature and oxygen partial pressure on the oxidation of titanium carbide, J. Am. Ceram. Soc., 50, 176, 10.1111/j.1151-2916.1967.tb15076.x Erickson, 1972 Harker, 2006, The influence of oxide thickness on the early stages of the massive uranium–hydrogen reaction, J. Alloy. Comp., 426, 106, 10.1016/j.jallcom.2006.02.014 Ben-Eliyahu, 1999, Hydride nucleation and formation of hydride growth centers on oxidized metallic surfaces—kinetic theory, J. Chem. Phys., 111, 6053, 10.1063/1.479903 Owen, 1966, A microscope study of the initiation of the hydrogen-uranium reaction, Corros. Sci., 6, 461, 10.1016/S0010-938X(66)80063-X Harker, 2013, Altering the hydriding behaviour of uranium metal by induced oxide penetration around carbo-nitride inclusions, Solid State Ion., 241, 46, 10.1016/j.ssi.2013.04.004 Chen, 2017, Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel, Science, 355, 1196, 10.1126/science.aal2418 Malard, 2012, Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering, Mater. Sci. Eng. A, 536, 110, 10.1016/j.msea.2011.12.080