An enhanced cascading failure model integrating data mining technique
Tóm tắt
An enhanced cascading failure model integrating data mining technique is proposed in this paper. In order to better simulate the process of cascading failure propagation and further analyze the relationship between failure chains, in view of a basic framework of cascading failure described in this paper, some significant improvements in emerging prevention and control measures, the subsequent failure search strategy as well as the statistical analysis for the failure chains are made elaborately. Especially, a sequential pattern mining model is employed to find out the association pertinent to the obtained failure chains. In addition, a cluster analysis model is applied to evaluate the relationship between the intermediate data and the consequence of obtained failure chain, which can provide the prediction in potential propagation path of cascading failure to reduce the risk of catastrophic events. Finally, the case studies are conducted on the IEEE 10-machine-39-bus test system as benchmark to demonstrate the validity and effectiveness of the proposed enhanced cascading failure model. Some preliminary concluding remarks and comments are drawn.
Tài liệu tham khảo
U.S.-Canada Power system outage task force (2004). Final report. [Online]. Available: http://www.epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-1165.pdf.
Final report system Disturbance on 4 November 2006. [Online]. Available: http://www.ucte.org/_library/otherreports/Final-Report-20070130.pdf. 2007.
ANEEL Report on Nov 10, 2009 Brazil Blackout. [Online]. Available: http://www.aneel.gov.br/aplicacoes/noticias_area/dsp_detalheNoticia.cfm?idNoticia=3338&idAreaNoticia=347. 2010.
Report on the Grid Disturbance on 30th July 2012 and Grid Disturbance on 31st July 2012. [Online]. Available: http://www.cercind.gov.in/2012/orders/Final_Report_Grid_Disturbance.pdf. 2012.
Mei, S., He, F., Zhang, X., et al. (2009). An improved OPA model and blackout risk assessment. IEEE Transactions on Power Systems, 24(2), 814–823.
Dobson, I., Carreras, B. A., & Newman, D. E. (2005). A loading-dependent model of probabilistic cascading failure. Probability in the Engineering and Informational Sciences, 19(1), 15–32.
Wu, H., & Dobson, I. (2013). Analysis of induction motor cascading stall in a simple system based on the cascade model. IEEE Transactions on Power Systems, 28(3), 3184–3193.
Kim, J., & Dobson, I. (2010). Approximating a loading-dependent cascading failure model with a branching process. IEEE Transactions on Power Reliability, 59(4), 691–699.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 3(6684), 440–442.
Bompard, E., Wu, D., & Xue, F. (2011). Structural vulnerability of power systems: a topological approach. Electric Power Systems Research, 81(7), 1334–1340.
Chang, L., & Wu, Z. (2011). Performance and reliability of electrical power grids under cascading failures. International Journal of Electrical Power & Energy Systems, 33(8), 1410–1419.
Dey, P., Mehra, R., Kazi, F., et al. (2016). Impact of topology on the propagation of cascading failure in power grid. IEEE Transactions on Power Systems, 7(4), 1970–1978.
Wang, A., Luo, Y., Tu, G., et al. (2011). Vulnerability assessment scheme for power system transmission networks based on the fault chain theory. IEEE Transactions on Power Systems, 26(1), 442–450.
Rahnamay-Naeini, M., & Hayat, M. (2016). Cascading failures in interdependent infrastructures: an interdependent Markov-chain approach. IEEE Transactions on Smart Grid, 7(4), 1997–2006.
Nedic, D. P., Dobson, I., Kirschen, D. S., et al. (2006). Criticality in a cascading failure blackout model. Electrical Power and Energy Systems, 28(9), 627–633.
Z. Shi, L. Shi, Y. Nin, et al. (2011) “Identifying Chains of Events During Power System Cascading Failure,” In: Power and Energy Engineering Conference (APPEEC). New York: Institute of Electrical and Electronic Engineers (IEEE).
Song, J., Cotilla-Sanchez, E., Ghanavati, G., et al. (2016). Dynamic modeling of cascading failure in power systems. IEEE Transactions on Power Systems, 31(3), 2085–2095.
Chen, J., Thorp, J. S., & Dobson, I. (2005). Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model. Electrical Power and Energy System, 27(4), 318–326.
Zhang, L. Y., Ding, L. J., Xiao, X. Y., et al. (2012). Risk assessment of power system cascading failure considering hidden failures and violation of temperature. Advanced Materials Research, 354, 1083–1087.
Li, C., Wang, J., & Yang, J. (2013). Analytical algorithm for tracing power flow. Proceedings of the CSU-EPSA, 25(3), 119–123.
Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. New Jersey: Addison Wesley.