An energy approach describes spine equilibrium in adolescent idiopathic scoliosis

Biomechanics and Modeling in Mechanobiology - Tập 20 - Trang 359-370 - 2020
Baptiste Brun-Cottan1, Pauline Assemat1, Vincent Doyeux1, Franck Accadbled1,2, Jérôme Sales de Gauzy1,2, Roxane Compagnon1,2, Pascal Swider1
1Institut de Mécanique des Fluides de Toulouse, IMFT, CNRS, Université de Toulouse, Toulouse, France
2Children Hospital, Toulouse University Hospital, Toulouse, France

Tóm tắt

The adolescent idiopathic scoliosis (AIS) is a 3D deformity of the spine whose origin is unknown and clinical evolution unpredictable. In this work, a mixed theoretical and numerical approach based on energetic considerations is proposed to study the global spine deformations. The introduced mechanical model aims at overcoming the limitations of computational cost and high variability in physical parameters. The model is constituted of rigid vertebral bodies associated with 3D effective stiffness tensors. The spine equilibrium is found using minimization methods of the mechanical total energy which circumvents forces and loading calculation. The values of the model parameters exhibited in the stiffness tensor are retrieved using a combination of clinical images post-processing and inverse algorithms implementation. Energy distribution patterns can then be evaluated at the global spine scale to investigate given time patient-specific features. To verify the reliability of the numerical methods, a simplified model of spine was implemented. The methodology was then applied to a clinical case of AIS (13-year-old girl, Lenke 1A). Comparisons of the numerical spine geometry with clinical data equilibria showed numerical calculations were performed with great accuracy. The patient follow-up allowed us to highlight the energetic role of the apical and junctional zones of the deformed spine, the repercussion of sagittal bending in sacro-illiac junctions and the significant role of torsion with scoliosis aggravation. Tangible comparisons of output measures with clinical pathology knowledge provided a reliable basis for further use of those numerical developments in AIS classification, scoliosis evolution prediction and potentially surgical planning.

Tài liệu tham khảo

Abelin-Genevois K, Estivalezes E, Briot J, Sévely A, de Gauzy JS, Swider P (2015) Spino-pelvic alignment influences disc hydration properties after AIS surgery: a prospective MRI-based study. Eur Spine J 24(6):1183–1190. https://doi.org/10.1007/s00586-015-3875-4 Albert T (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia 978-0-89871-792-1 Araújo Fábio A, Ana M, Nuno A, Howe Laura D, Raquel L (2017) A shared biomechanical environment for bone and posture development in children. Spine J 17(10):1426–1434. https://doi.org/10.1016/j.spinee.2017.04.024 Brink RC, Schlösser TPC, van Stralen M, Vincken KL, Kruyt MC, Hui SC, Viergever MA, Chu WC, Cheng JC, Castelein RM (2018) Anterior-posterior length discrepancy of the spinal column in adolescent idiopathic scoliosis-a 3d CT study. Spine J 18(12):2259–2265. https://doi.org/10.1016/j.spinee.2018.05.005 Davidson JD, Jebaraj C, Narayan Y, Rajasekaran S, Kanna Rishi M (2012) Sensitivity studies of pediatric material properties on juvenile lumbar spine responses using finite element analysis. Med Biol Eng Comput 50(5):515–522. https://doi.org/10.1007/s11517-012-0896-6 Drevelle X, Lafon Y, Ebermeyer E, Courtois I, Dubousset J, Skalli W (2010) Analysis of idiopathic scoliosis progression by using numerical simulation. Spine 35(10):E407–E412. https://doi.org/10.1097/BRS.0b013e3181cb46d6 Ferguson Stephen J, Keita I, Lutz-P N (2004) Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 37(2):213–221. https://doi.org/10.1016/S0021-9290(03)00250-1 Lafage V, Dubousset J, Lavaste F, Skalli W (2004) 3d finite element simulation of Cotrel–Dubousset correction. Comput Aided Surg 9(1–2):17–25. https://doi.org/10.3109/10929080400006390 Lenke Lawrence G, Betz Randal R, Jürgen H, Bridwell Keith H, Clements David H, Lowe Thomas G, Kathy B (2001) Adolescent idiopathic scoliosis : a new classification to determine extent of spinal arthrodesis. JBJS 83(8):1169 Ludescher B, Effelsberg J, Martirosian P, Steidle G, Markert B, Claussen C, Schick F (2008) T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 Tesla. J Magn Reson Imaging 28(1):252–257. https://doi.org/10.1002/jmri.21390 Meng X, Bruno AG, Cheng B, Wang W, Bouxsein ML, Anderson DE (2015) Incorporating six degree-of-freedom intervertebral joint stiffness in a lumbar spine musculoskeletal model-method and performance in flexed postures. J Biomech Eng 137(10):101008-1–101008-9. https://doi.org/10.1115/1.4031417 Newell N, Little JP, Christou A, Adams MA, Adam CJ, Masouros SD (2017) Biomechanics of the human intervertebral disc: a review of testing techniques and results. J Mech Behav Biomed Mater 69:420–434. https://doi.org/10.1016/j.jmbbm.2017.01.037 Noailly J, Wilke H-J, Planell JA, Lacroix D (2007) How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. J Biomech 40(11):2414–2425. https://doi.org/10.1016/j.jbiomech.2006.11.021 O’Connell Grace D, Wade J, Vresilovic Edward J, Elliott Dawn M (2007) Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging. Spine 32(25):2860–2868. https://doi.org/10.1097/BRS.0b013e31815b75fb Riseborough Edward J, Ruth W-D (1973) A genetic survey of idiopathic scoliosis in Boston, Massachusetts. JBJS 55(5):974 Schultz AB, Warwick DN, Berkson MH, Nachemson AL (1979) Mechanical properties of human lumbar spine motion segments. J Biomech Eng 101:46–52 Stefan S, Burkhart Katelyn A, Allaire Brett T, Daniel G, Anderson Dennis E (2019) Musculoskeletal full-body models including a detailed thoracolumbar spine for children and adolescents aged 6–18 years. J Biomech. https://doi.org/10.1016/j.jbiomech.2019.07.049 Stokes Ian AF (2007) Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation. Eur Spine J 16(10):1621–1628. https://doi.org/10.1007/s00586-007-0442-7 Stokes Ian A, Mack G-M, David C, Laible Jeffrey P (2002) Measurement of a spinal motion segment stiffness matrix. J Biomech 35(4):517–521 Swider P, Pedrono A, Ambard D, Accadbled F, de Gauzy JS (2010) Substructuring and poroelastic modelling of the intervertebral disc. J Biomech 43(7):1287–1291. https://doi.org/10.1016/j.jbiomech.2010.01.006 Tingting Z, Tao A, Wei Z, Tao L, Xiaoming L (2015) Segmental quantitative MR imaging analysis of diurnal variation of water content in the lumbar intervertebral discs. Korean J Radiol 16(1):139. https://doi.org/10.3348/kjr.2015.16.1.139 Tristan L, Claudio V, Raphael P, Jean D, Wafa S, Raphael V (2018) Shear-wave elastography can evaluate annulus fibrosus alteration in adolescent scoliosis. Eur Radiol 28(7):2830–2837. https://doi.org/10.1007/s00330-018-5309-2 van der Plaats A, Veldhuizen AG, Verkerke GJ (2007) Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Ann Biomed Eng 35(7):1206–1215. https://doi.org/10.1007/s10439-007-9256-3 Villemure I, Aubin CE, Dansereau J, Labelle H (2004) Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J 13(1):83–90. https://doi.org/10.1007/s00586-003-0565-4 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson Andrew RJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, Contributors SciPy 1 0 (2019) SciPy 1.0–fundamental algorithms for scientific computing in python. arXiv:1907.10121 [physics] Violas P, Estivalezes E, Briot J, de Gauzy JS, Swider P (2007) Quantification of intervertebral disc volume properties below spine fusion, using magnetic resonance imaging, in adolescent idiopathic scoliosis surgery. Spine 32(15):E405–E412. https://doi.org/10.1097/BRS.0b013e318074d69f