An empirical comparison of generalized structured component analysis and partial least squares path modeling under variance-based structural equation models

Behaviormetrika - Tập 47 Số 1 - Trang 243-272 - 2020
Gyeongcheol Cho1, Ji Yeh Choi2
1Department of Psychology, McGill University, Montreal, Canada
2Department of Psychology, York University, Toronto, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson EW, Fornell C (2002) Foundations of the American customer satisfaction index. Total Qual Manag 11(7):869–882. https://doi.org/10.1080/09544120050135425

Becker J-M, Rai A, Rigdon E (2013) Predictive validity and formative measurement in structural equation modeling: embracing practical relevance. In: Proceedings of the 34th international conference on information systems (ICIS), Milan, Italy

Bollen KA (1989) Structural equations with latent variables. Wiley, Hoboken. https://doi.org/10.1002/9781118619179

Bollen KA (1996) An alternative two stage least squares (2SLS) estimator for latent variable equations. Psychometrika 61(1):109–121. https://doi.org/10.1007/BF02296961

Bollen KA (2011) Evaluating effect, composite, and causal indicators in structural equation models. MIS Q 35(2):359. https://doi.org/10.2307/23044047

Bollen KA, Kirby JB, Curran PJ, Paxton PM, Chen F (2007) Latent variable models under misspecification two-stage least squares (2SLS) and maximum likelihood (ML) estimators. Soc Methods Res 36(1):48–86. https://doi.org/10.1177/0049124107301947

Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

Chin WW (1998) The partial least squares approach for structural equation modeling. In: Marcoulides GA (ed) Methodology for business and management. Modern methods for business research. Lawrence Erlbaum Associates Publishers, Mahwah, NJ, US, pp 295–336

Cho G, Jung K, Hwang H (2019) Out-of-bag prediction error: a cross validation index for generalized structured component analysis. Multivar Behav Res. https://doi.org/10.1080/00273171.2018.1540340

Cronbach LJ, Meehl PE (1955) Construct validity in psychological tests. Psychol Bull 52(4):281–302

Dijkstra TK (2017) A perfect match between a model and a mode. In: Partial least squares path modeling: basic concepts, methodological issues and applications. Springer, Berlin, pp 55–80. https://doi.org/10.1007/978-3-319-64069-3_4

Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26. https://doi.org/10.1214/aos/1176344552

Eklöf JA, Westlund AH (2002) The pan-European customer satisfaction index programme—current work and the way ahead. Total Qual Manag 13(8):1099–1106. https://doi.org/10.1080/09544120200000005

Fomby TB, Johnson SR, Hill RC (2011) Advanced econometric methods. Advanced econometric methods. Springer, New York. https://doi.org/10.1007/978-1-4419-8746-4

Fornell C, Johnson MD, Anderson EW, Cha J, Bryant BE (1996) The American customer satisfaction index: nature, purpose, and findings. J Mark 60(4):7. https://doi.org/10.2307/1251898

Gallier J, Quaintance J (2019) Algebra, topology, differential calculus, and optimization theory for computer science and engineering. Philadelphia, PA. Retrieved Feb 20, 2019, from https://www.cis.upenn.edu/~jean/math-basics.pdf

Gerbing DW, Hamilton JG (1994) The surprising viability of a simple alternate estimation procedure for construction of large-scale structural equation measurement models. Struct Equ Model A Multidiscip J 1(2):103–115. https://doi.org/10.1080/10705519409539967

Hair JF, Hult GTM, Ringle CM, Sarstedt M, Thiele KO (2017) Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. J Acad Mark Sci 45(5):616–632. https://doi.org/10.1007/s11747-017-0517-x

Hwang H, Takane Y (2014) Generalized structured component analysis: a component-based approach to structural equation modeling. Chapman and Hall/CRC Press, New York

Hwang H, Malhotra NK, Kim Y, Tomiuk MA, Hong S (2010) A comparative study on parameter recovery of three approaches to structural equation modeling. J Mark Res 47(4):699–712. https://doi.org/10.2139/ssrn.1585305

Hwang H, Takane Y, Tenenhaus A (2015) An alternative estimation procedure for partial least squares path modeling. Behaviormetrika 42(1):63–78. https://doi.org/10.2333/bhmk.42.63

Hwang H, Sarstedt M, Cheah JH, Ringle CM (2019) A concept analysis of methodological research on composite-based structural equation modeling: bridging PLSPM and GSCA. Behaviormetrika. https://doi.org/10.1007/s41237-019-00085-5

Jarvis CB, MacKenzie SB, Podsakoff PM (2003) A critical review of construct indicators and measurement model misspecification in marketing and consumer research. J Consum Res 30(2):199–218. https://doi.org/10.1086/376806

Jöreskog KG (1970) Estimation and testing of simplex models. Br J Math Stat Psychol 23(2):121–145. https://doi.org/10.1111/j.2044-8317.1970.tb00439.x

Jöreskog KG (1978) Structural analysis of covariance and correlation matrices. Psychometrika 43(4):443–477. https://doi.org/10.1007/BF02293808

Lay DC, Lay SR, McDonald JJ (2015) Linear algebra and its applications, 576

Lohmöller J-B (1989) Latent variable path modeling with partial least squares. Springer, New York. https://doi.org/10.1007/978-3-642-52512-4

Marsh HW, Hau KT, Balla JR, Grayson D (1998) Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivar Behav Res 33(2):181–220. https://doi.org/10.1207/s15327906mbr3302_1

Rego LL, Morgan NA, Fornell C (2013) Reexamining the market share-customer satisfaction relationship. J Mark 77(5):1–20. https://doi.org/10.1509/jm.09.0363

Reinartz W, Haenlein M, Henseler J (2009) An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int J Res Mark 26(4):332–344. https://doi.org/10.1016/j.ijresmar.2009.08.001

Rigdon EE (2012) Rethinking partial least squares path modeling: in praise of simple methods. Long Range Plan 45(5–6):341–358. https://doi.org/10.1016/j.lrp.2012.09.010

Roldán JL, Sánchez-Franco MJ (2012) Variance-based structural equation modeling: guidelines for using partial least squares in information systems research. In: Mora M, Gelman O, Steenkamp AL, Raisinghani M (eds) Research methodologies, innovations and philosophies in software systems engineering and information systems. IGI Global, Hershey, pp 193–221. https://doi.org/10.4018/978-1-4666-0179-6.ch010

Sarstedt M, Hair JF, Ringle CM, Thiele KO, Gudergan SP (2016) Estimation issues with PLS and CBSEM: where the bias lies! J Bus Res 69(10):3998–4010. https://doi.org/10.1016/j.jbusres.2016.06.007

Sharma PN, Shmueli G, Sarstedt M, Danks N, Ray S (2018) Prediction-oriented model selection in partial least squares path modeling. Decis Sci 00:1–41. https://doi.org/10.1111/deci.12329

Shmueli G, Ray S, Velasquez Estrada JM, Chatla SB (2016) The elephant in the room: predictive performance of PLS models. J Bus Res 69(10):4552–4564. https://doi.org/10.1016/J.JBUSRES.2016.03.049

Tenenhaus M (2008) Component-based structural equation modelling. Total Quality Manag Bus Excell 19(7–8):871–886. https://doi.org/10.1080/14783360802159543

Tenenhaus M, Esposito Vinzi V, Chatelin Y-M, Lauro C (2005) PLS path modeling. Comput Stat Data Anal 48(1):159–205. https://doi.org/10.1016/J.CSDA.2004.03.005

Wold H (1982) Models for knowledge. In: Gani J (ed) The making of statisticians. Springer, New York, pp 189–212. https://doi.org/10.1007/978-1-4613-8171-6_1