An electrochemiluminescent biosensor based on polypyrrole immobilized uricase for ultrasensitive uric acid detection
Tóm tắt
Từ khóa
Tài liệu tham khảo
Byfield, 1994, Biochemical aspects of biosensors, Biosens. Bioelectron., 9, 373, 10.1016/0956-5663(94)80038-3
Sethi, 1994, Transducer aspects of biosensors, Biosens. Bioelectron., 9, 243, 10.1016/0956-5663(94)80127-4
Ahuja, 2007, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials, 28, 791, 10.1016/j.biomaterials.2006.09.046
Chen, 2006, A simple means to immobilize enzyme into conducting polymers via entrapment, Electrochem. Solid-State Lett., 9, H68, 10.1149/1.2201306
Rajesh, 2005, An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film, Biomaterials, 26, 3683, 10.1016/j.biomaterials.2004.09.024
Saxena, 2003, Prospects of conducting polymers in molecular electronics, Curr. Appl. Phys., 3, 293, 10.1016/S1567-1739(02)00217-1
Chaichit, 1979, Synthesis and X-ray crystal structure of fruticosonine, a novel indole alkaloid from a New Zealand Aristotelia sp. (elaeocarpaceae), J. Chem. Soc., Chem. Commun., 874, 10.1039/c39790000874
Kanazawa, 1980, Polypyrrole: an electrochemically synthesized conducting organic polymer, Synth. Met., 1, 329, 10.1016/0379-6779(80)90022-3
Diaz, 1979, Electrochemical polymerization of pyrrole, J. Chem. Soc. Chem. Commun., 14, 635, 10.1039/c39790000635
Gonzales-Velasco, 1983, Electrogenerated chemiluminescence. 42. Electrochemistry and electrogenerated chemiluminescence of the tris (2,2′-bipyrazine) ruthenium (II) system, Inorg. Chem., 22, 822, 10.1021/ic00147a024
Xu, 1995, Immobilization and hybridization of DNA on an aluminum (III) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection, J. Am. Chem. Soc., 117, 2627, 10.1021/ja00114a027
Fähnrich, 2001, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta, 54, 531, 10.1016/S0039-9140(01)00312-5
Marquette, 2001, Electrogenerated chemiluminescence of luminol for oxidase-based fibre-optic biosensors, Luminescence, 16, 159, 10.1002/bio.617
Yang, 2002, Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis, Analyst, 127, 1267, 10.1039/b205783b
Calvo-Muñoz, 2005, Detection of DNA hybridization by ABEI electrochemiluminescence in DNA-chip compatible assembly, Bioelectrochemistry, 66, 139, 10.1016/j.bioelechem.2004.04.009
Marquette, 2003, Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate, Biosens. Bioelectron., 19, 433, 10.1016/S0956-5663(03)00225-2
Cai, 2010, An exercise degree monitoring biosensor based on electrochemiluminescent detection of lactate in sweat, Sens. Actuators B: Chem., 143, 655, 10.1016/j.snb.2009.10.002
Chu, 2010, Study on a luminol-based electrochemiluminescent sensor for label-free DNA sensing, Sensors, 10, 9481, 10.3390/s101009481
Chu, 2011, A nano-functionalized real-time electrochemiluminescent biosensor for alanine transaminase assay, Sci. China Chem., 54, 816, 10.1007/s11426-010-4148-z
Cirillo, 2006, Uric acid, the metabolic syndrome, and renal disease, J. Am. Soc. Nephrol., 17, S165, 10.1681/ASN.2006080909
Shi, 2003, Molecular identification of a danger signal that alerts the immune system to dying cells, Nature, 425, 516, 10.1038/nature01991
Zen, 1998, Selective voltammetric method for uric acid detection using pre-anodized nafion-coated glassy carbon electrodes, Analyst, 103, 1345, 10.1039/a801532e
Nakaminami, 1999, Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer, Anal. Chem., 71, 1928, 10.1021/ac981168u
Wang, 1987, Poly(4-vinylpyridine)-coated glassy carbon flow detectors, Anal. Chem., 59, 740, 10.1021/ac00132a013
Hong, 2003, Flow injection analysis of uric acid with a uricase- and horseradish peroxidase-coupled sepharose column based luminol chemiluminescence system, Anal. Chim. Acta, 499, 41, 10.1016/S0003-2670(03)00950-4
Kannan, 2009, Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode, Anal. Biochem., 386, 65, 10.1016/j.ab.2008.11.043
Chen, 2008, Selective detection of uric acid in the presence of ascorbic acid based on electrochemiluminescence quenching, J. Electroanal. Chem., 612, 151, 10.1016/j.jelechem.2007.09.018
Chu, 2009, Study on sensitization from reactive oxygen species for electrochemiluminescence of luminol in neutral medium, Electroanalysis, 21, 1630, 10.1002/elan.200804580
Guo, 2010, Studies on the electrochemiluminescent behavior of luminol on indium tin oxide (ITO) glass, J. Lumin., 130, 2022, 10.1016/j.jlumin.2010.05.020
Chen, 2011, Luminol-based micro-flow-injection electrochemiluminescent system to determine reactive oxygen species, Talanta, 85, 1304, 10.1016/j.talanta.2011.06.002
Guo, 2011, The intensification of luminol electrochemiluminescence by metallic oxide nanoparticles, Sci. China Chem., 54, 1640, 10.1007/s11426-011-4357-0
Zhao, 2012, Study of the electrochemically generated chemiluminescence of reactive oxygen species on the indium tin oxide glass, Electrochim. Acta, 61, 118, 10.1016/j.electacta.2011.11.109
Sefcovicova, 2009, Off-line FIA monitoring of d-sorbitol consumption during l-sorbose production using a sorbitol biosensor, Anal. Chim. Acta, 633, 68, 10.1016/j.aca.2009.04.012
Michaelis, 1913, Die kinetik der invertinwirkung, Biochem. Z., 49, 333
DeRosa, 2002, Photosensitized singlet oxygen and it's applications, Coord. Chem. Rev., 233–234, 351, 10.1016/S0010-8545(02)00034-6