An electrochemical aptasensor based on multi-walled carbon nanotubes loaded with PtCu nanoparticles as signal label for ultrasensitive detection of adenosine
Tài liệu tham khảo
Huang, 2011, Time-resolved fluorescence biosensor for adenosine detection based on home-made europium complexes, Biosens. Bioelectron., 29, 178, 10.1016/j.bios.2011.08.014
Zhang, 2008, Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles, Anal. Chem., 80, 8382, 10.1021/ac800857p
Liu, 2009, Reagentless aptamer based impedance biosensor for monitoring adenosine, Electroanalysis, 21, 1781, 10.1002/elan.200904599
You, 2017, Who captures the power of the pen?, Rev. Financ. Stud., 31, 43, 10.1093/rfs/hhx055
Tang, 2017, Multiple functional strategies for amplifying sensitivity of amperometric immunoassay for tumor markers: a review, Biosens. Bioelectron., 98, 100, 10.1016/j.bios.2017.06.041
Shahdost-fard, 2014, Highly selective and sensitive adenosine aptasensor based on platinum nanoparticles as catalytical label for amplified detection of biorecognition events through H2O2 reduction, Biosens. Bioelectron., 53, 355, 10.1016/j.bios.2013.09.024
Dai, 2019, A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy [J], Biosens. Bioelectron., 132, 97, 10.1016/j.bios.2019.02.055
Male, 2004, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes, Anal. Chim. Acta, 516, 35, 10.1016/j.aca.2004.03.075
Zhang, 2006, Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid, Carbon, 44, 276, 10.1016/j.carbon.2005.07.021
Yang, 2011, Facile synthesis of hollow palladium/copper alloyed nanocubes for formic acid oxidation, Chem. Commun., 47, 8581, 10.1039/c1cc12528a
Strasser, 2010, Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts, Nat. Chem., 2, 454, 10.1038/nchem.623
Wan, 2016, Concave Pt–Cu nanocuboctahedrons with high-index facets and improved electrocatalytic performance, CrystEngComm, 18, 3216, 10.1039/C6CE00081A
Bondarenko, 2011, The Pt (111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study, Langmuir, 27, 2058, 10.1021/la1042475
Neyerlin, 2009, Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR), J. Power Sources, 186, 261, 10.1016/j.jpowsour.2008.10.062
Tan, 2015, Removal of uranium (VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites, Chem. Eng. J., 273, 307, 10.1016/j.cej.2015.01.110
Robertson, 1990, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, 344, 467, 10.1038/344467a0
Ellington, 1990, In vitro selection of RNA molecules that bind specific ligands, Nature, 346, 818, 10.1038/346818a0
Tuerk, 1990, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, 505, 10.1126/science.2200121
You, 2011, Engineering DNA aptamers for novel analytical and biomedical applications, Chem. Sci., 2, 1003, 10.1039/c0sc00647e
Chen, 2011, Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications, Nanoscale, 3, 546, 10.1039/C0NR00646G
Liu, 2011, Aptamer-incorporated hydrogels for visual detection, controlled drug release, and targeted cancer therapy, Anal. Bioanal. Chem., 402, 187, 10.1007/s00216-011-5414-4
Cho, 2009, Applications of aptamers as sensors, Annu. Rev. Anal. Chem., 2, 241, 10.1146/annurev.anchem.1.031207.112851
Hianik, 2009, Electrochemical aptasensors – recent achievements and perspectives, Electroanalysis, 21, 1223, 10.1002/elan.200904566
Hansen, 2006, Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor, J. Am. Chem. Soc., 128, 2228, 10.1021/ja060005h
White, 2008, Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry, Langmuir, 24, 10513, 10.1021/la800801v
Wang, 2008, Fluorescent detection of ATP based on signaling DNA aptamer attached silica nanoparticles, Nanotechnology, 19, 10.1088/0957-4484/19/41/415605
Huang, 2010, DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence, Nanoscale, 2, 606, 10.1039/b9nr00393b
Knudsen, 2006, Ribozyme-mediated signal augmentation on a mass-sensitive biosensor, J. Am. Chem. Soc., 128, 15936, 10.1021/ja064137m
Dhara, 2014, Pt-CuO nanoparticles decorated reduced graphene oxide for the fabrication of highly sensitive non-enzymatic disposable glucose sensor, Sensor. Actuator. B Chem., 195, 197, 10.1016/j.snb.2014.01.044
Yu, 2018, Ce(III, IV)-MOF electrocatalyst as signal-amplifying tag for sensitive electrochemical aptasensing, Biosens. Bioelectron., 109, 63, 10.1016/j.bios.2018.03.005
Sun, 2019, DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme, Biosens. Bioelectron., 142, 10.1016/j.bios.2019.111578
Chen, 2020, Ultrasensitive dual-signal ratiometric electrochemical aptasensor for neuron-specific enolase based on Au nanoparticles@Pd nanoclusters-poly (bismarck brown Y) and dendritic AuPt nanoassemblies, Sensor. Actuator. B Chem., 311, 10.1016/j.snb.2020.127931
Yang, 2018, A three-dimensional graphene-based ratiometric signal amplification aptasensor for MUC1 detection, Biosens. Bioelectron., 120, 85, 10.1016/j.bios.2018.08.036
Zhang, 2018, Sandwich-type electrochemical immunosensor based on Au@Ag supported on functionalized phenolic resin microporous carbon spheres for ultrasensitive analysis of α-fetoprotein, Biosens. Bioelectron., 106, 142, 10.1016/j.bios.2018.02.001
Zhang, 2010, Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer, Anal. Biochem., 397, 212, 10.1016/j.ab.2009.10.027
Zhang, 2012, A gold nanoparticles-modified aptamer beacon for urinary adenosine detection based on structure-switching/fluorescence “turning on” mechanism, J. Pharmaceut. Biomed. Anal., 70, 362, 10.1016/j.jpba.2012.05.032
Wang, 2010, A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer, Anal. Chim. Acta, 658, 128, 10.1016/j.aca.2009.11.007
Wu, 2007, Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers, Anal. Chem., 79, 2933, 10.1021/ac0622936
Wu, 2015, Electrochemical aptasensor for the detection of adenosine by using PdCu@MWCNTs-supported bienzymes as labels, Biosens. Bioelectron., 74, 391, 10.1016/j.bios.2015.07.003
Sun, 2013, Simultaneous electrochemical determination of guanosine and adenosine with graphene–ZrO2 nanocomposite modified carbon ionic liquid electrode, Biosens. Bioelectron., 44, 146, 10.1016/j.bios.2013.01.030
Gerlach, 1982, The generalized standard addition method: intermetallic interferences in anodic stripping voltammetry, Anal. Chim. Acta, 134, 119, 10.1016/S0003-2670(01)84183-0
Csoma, 2005, Adenosine level in exhaled breath increases during exercise-induced bronchoconstriction, Eur. Respir. J., 25, 873, 10.1183/09031936.05.00110204