An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010).
Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).
Cotton, D., Graz, I. & Lacour, S. P. A multifunctional capacitive sensor for stretchable electronic skins. Sensors J. 9, 2008–2009 (2009).
Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotech. 6, 788–792 (2011).
Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).
Ramuz, M., Tee, B. C.-K., Tok, J. B-H. & Bao, Z. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24, 3223–3227 (2012).
Pang, C. et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Mater. 11, 795–801 (2012).
Ilievski, F., Mazzeo, A., Shepherd, R., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. Int. Ed. 50, 1930–1935 (2011).
Chen, X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1701 (2002).
Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).
Montarnal, D., Tournilhac, F., Hidalgo, M., Couturier, J-L. & Leibler, L. Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J. Am. Chem. Soc. 131, 7966–7967 (2009).
Yuan, W. et al. Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv. Mater. 20, 621–625 (2008).
Brochu, P. & Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010).
Nakahata, M., Takashima, Y., Yamaguchi, H. & Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nature Commun. 2, 511–516 (2011).
Li, Y., Li, L. & Sun, J. Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. 122, 6265–6269 (2010).
Wong, T-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).
Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).
Williams, K., Boydston, A. & Bielawski, C. Towards electrically conductive, self-healing materials. J. R. Soc. Interface 4, 359–362 (2007).
Odom, S. A. et al. Restoration of conductivity with TTF-TCNQ charge-transfer salts. Adv. Funct. Mater. 20, 1721–1727 (2010).
Blaiszik, B. J. et al. Autonomic restoration of electrical conductivity. Adv. Mater. 24, 398–401 (2012).
Blaiszik, B. J. et al. Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179–211 (2010).
Li, Y., Chen, S., Wu, M. & Sun, J. Polyelectrolyte multilayers impart healability to highly electrically conductive films. Adv. Mater. 24, 4578–4582 (2012).
Ghosh, S. K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications (Wiley, 2009).
Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nature Mater. 10, 14–27 (2010).
Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001).
Wang, L. et al. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid Commun. 18, 509–514 (1997).
Uchikoshi, T., Sakka, Y., Yoshitake, M. & Yoshihara, K. A study of the passivating oxide layer on fine nickel particles. Nanostruct. Mater. 4, 199–206 (1994).
Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).
Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor & Francis, 1994).
Nan, C. W., Shen, Y. & Ma, J. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010).
Bloor, D., Graham, A., Williams, E. J., Laughlin, P. J. & Lussey, D. Metal–polymer composite with nanostructured filler particles and amplified physical properties. Appl. Phys. Lett. 88, 102103 (2006).
Wang, P. & Ding, T. Conductivity and piezoresistivity of conductive carbon black filled polymer composite. J. Appl. Polym. Sci. 116, 2035–2039 (2010).