An eikonal-curvature equation for action potential propagation in myocardium
Tóm tắt
We derive an “eikonal-curvature” equation to describe the propagation of action potential wavefronts in myocardium. This equation is used to study the effects of fiber orientation on propagation in the myocardial wall. There are significant computational advantages to the use of an eikonal-curvature equation over a full ionic model of action potential spread. With this model, it is shown that the experimentally observed misalignment of spreading action potential “ellipses” from fiber orientation in level myocardial surfaces is adequately explained by the rotation of fiber orientation through the myocardial wall. Additionally, it is shown that apparently high propagation velocities on the epicardial and endocardial surfaces are the result of propagation into the midwall region and acceleration along midwall fibers before reemergence at an outer surface at a time preceding what could be accomplished with propagation along the surface alone.
Tài liệu tham khảo
Aronson, D. G., Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion and nerve pulse propagation. In: Goldstein, J. A. (ed.) Partial Differential Equations and Related Topics. Berlin Heidelberg New York: Springer 1975
Balke, C. W., Lesh, M. D., Spear, J. F., Kadish, A., Levine, J. H., Moore, E. N.: Effects of cellular uncoupling on conduction in anisotropic canine ventricular myocardium. Circ. Res. 63, 879–892 (1988)
Beeler, G. W., Reuter, H.: Reconstruction of the action potential of myocardial fibers. J. Physiol. (London) 268, 177–210 (1977)
Burton, W. K., Cabrera, N., Frank, F. C.: The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. Roy. Soc. Lond. A 243, 299–358 (1951)
Cole, J. D.: Perturbation Methods in Applied Mathemetics. Waltham, Ma.: Blaisdel 1968
Cole, W. C., Picone, J. B., Sperelakis, N.: Gap junction uncoupling and discontinuous propagation in the heart. Biophys. J. 53, 809–818 (1988)
Colli-Franzone, P., Guerri, L., Rovida, S.: Wavefront propagation in an activation model of the anisotropic cardiac tissue: Asymptotic analysis and numerical simulations. J. Math. Biol. 28, 121–176 (1990)
Delgado, C., Steinhaus, B., Delmar, M., Chialvo, D. R., Jalife, J.: Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle. Circ. Res. 67, 97–110 (1990)
Diaz, P. J., Rudy, Y., Plonsey, R.: Intercalated discs as a cause for discontinuous propagation in cardiac muscle: A theoretical simulation. Ann. Biomed. Eng. 11, 177–189 (1983)
Ebihara, L., Johnson, E. A.: Fast sodium current in cardiac muscle, a quantitative description. Biophys. J. 32, 779–790 (1980)
Fife, P. C.: Mathematical Aspects of Reacting and Diffusing Systems. (Lect. Notes Biomath.) Berlin Heidelberg New York: Springer 1979
Foerster, P., Muller, S. C., Hess, B.: Curvature and propagation velocity of chemical waves. Science 241, 685–687 (1988)
Frankel, M. L., Sivashinsky, G. I.: On the equation of a curved flame front. Physica D 30, 28–42 (1988)
Frazier, D. W., Krassowska, W., Chen, P. S., Wolf, P. D., Danieley, N. D., Smith, W. M., Ideker, R. E.: Transmural activations and stimulus potentials in three-dimensional anisotropic canine myocardium. Circ. Res. 63, 135–146 (1988)
Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 177, 500–544 (1952)
Joyner, R. W.: Effects of the discrete pattern of electrical coupling on propagation through an electrical syncytium. Circ. Res. 50, 192–200 (1982)
Joyner, R. W., Veenstra, R., Rawling, D., Chorro, A.: Propagation through electrically coupled cells; effects of a resistive barrier. Biophys. J. 45, 1017–1025 (1984)
Kawato, M., Yamanaka, A., Urushiba, S., Nagata, O., Irisawa, H., Suzuki, R.: Simulation analysis of excitation conduction in the heart: Propagation of excitation in different tissues. J. Theor. Biol. 120, 389–409 (1986)
Keener, J. P.: A geometrical theory for spiral waves in excitable media. SIAM J. Appl. Math. 46, 1039–1056 (1986)
Keener, J. P.: Principles of Applied Mathematics: Transformation and Approximation. Reading, Ma.: Addison-Wesley 1988
Keener, J. P.: The effects of discrete gap junction coupling on propagation in myocardium. J. Theor. Biol. 148, 49–82 (1991)
McAllister, R. E., Noble, D., Tsien, R. W.: Reconstruction of the electrical activity of cardiac Purkinje fibers. J. Physiol. 251, 1–59 (1975)
Nielson, P. M. F., LeGrice, I. J., Smalil, B. H., Hunter, P. J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260, H1365-H1378 (1991)
Noble, D., Noble, S. J.: A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations. Proc. Roy. Soc. Lond. B222, 295–304 (1984)
Ohta, T., Mimura, M., Kobayashi, R.: Higher-dimensional localized patterns in excitable media. Physica D 34, 115–144 (1989)
Osher, S., Sethian, J. A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 79, 12–49 (1988)
Plonsey, R.: The use of a bidomain model for the study of excitable media. In: Othmer H. G. (ed.) Some Mathematical Questions in Biology. Providence: AMS 1989
Roberge, F. A., Vinet, A., Victorri, B.: Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle. Circ. Res. 58, 461–475 (1986)
Rudy, Y., Quan, W.-L.: A model study of the effects of the discrete cellular structure on electrical propagation on cardiac tissue. Circ. Res. 61, 815–823 (1987)
Sethian, J. A.: Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws. J. Differ. Geom. 31, 131–161 (1990)
Spach, M. S., Kootsey, J. M.: The nature of electrical propagation in cardiac muscle. Am. J. Physiol 244, H3-H22 (1983)
Spach, M. S., Miller, W. T., Geselowitz, D. B., Barr, R. C., Kootsey, J. M., Johson, E. A.: The discontinuous nature of propagation in normal canine cardiac muscle. Circ. Res. 48, 39–54 (1981)
Stoker, J. J.: Differential Geometry. New York: Wiley-Interscience 1969
Streeter, D. D.: Gross morphology and fiber geometry of the heart. In: Berne, R. M., Sperelakis, N., Geigert, S. R. (eds.) Handbook of Physiology. Baltimore: Williams and Wilkins 1979
Tsuboi, N., Kodama, I., Toyama, J., Yamada, K.: Anisotropic conduction properties of canine ventricular myocardium, influence of high extracellular K + concentration and stimulation frequency. Jap. Circ. J. 49, 487–498 (1985)
Tyson, J. J., Keener, J. P.: Spiral waves in a model of myocardium. Physica D 29, 215–222 (1987)
Tyson, J. J., Keener, J. P.: Singular perturbation theory of traveling waves in excitable media (a review). Physica D 32, 327–361 (1988)
Wiedmann, S.: Electrical constants of trabecular muscle on mammalian heart. J. Physiol. (London) 118, 348–360 (1970)
Yanagihara, K., Noma, A., Irisawa, H.: Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments. Jpn. J. Physiol. 30, 841–857 (1980)