An efficient subsequence search for video anomaly detection and localization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adam A, Rivlin E, Shimshoni I, Reinitz D (2008) Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans Pattern Anal Mach Intell 30:555–560
Antic B, Ommer B (2011) Video parsing for abnormality detection. In: Int. Conf. Comput. Vis., pp 2415–2422
Benezeth Y, Jodoin P, Saligrama V, Rosenberger C (2009) Abnormal events detection based on spatio-temporal co-occurences. In: Conf. Comput. Vis. Pattern Recognit., pp 2458–2465
Benezeth Y, Jodoin PM, Saligrama V (2011) Abnormality detection using low-level co-occurring events. Pattern Recognit Lett 32:423–431
Bertini M, Bimbo AD, Seidenari L (2012) Multi-scale and real-time non-parametric approach for anomaly detection and localization. Comput Vis Image Underst 116:320–329
Boiman O, Irani M (2005) Detecting irregularities in images and in video. In: Int. Conf. Comput. Vis., pp 462–469
Chen YT, Lin YC, Fang WH (2010) A video-based human fall detection system for the smart home. J Chin Eng 33:681–690
Cheng KW, Chen YT, Fang WH (2013) Abnormal crowd behavior detection and localization using maximum sub-sequence search. In: ACM/IEEE Int. Workshop Anal. Retr. Track. Event Motion Imag. Stream, pp 49–58
Cong Y, Yuan J, Liu J (2011) Sparse reconstruction cost for abnormal event detection. In: Conf. Comput. Vis. Pattern Recognit., pp 3449–3456
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Conf. Comput. Vis. Pattern Recognit., pp 886–893
Dalal N, Triggs B, Schmid C (2006) Human detection using oriented histograms of flow and appearance. In: Eur. Conf. Comput. Vis., pp 428–441
Duque D, Santos H, Cortez P (2007) Prediction of abnormal behaviors for intelligent video surveillance systems. In: Comput. Intell. Data Min., pp 362–367
Everingham M, Gool LV, Williams CKI, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88:303–338
Fei-Fei L, Fergus R, Torralba A (2007) Recognizing and learning object categories. In: Antonio Torralba’s website http://people.csail.mit.edu/torralba/shortCourseRLOC/
Hu DH, Zhang X, Yin J, Zheng VW, Yang Q (2009) Abnormal activity recognition based on hdp-hmm models. In: Int. Jt. Conf. Artif. Intell., pp 1715–1720
Kettnaker VM (2003) Time-dependent hmms for visual intrusion detection. In: Comput. Vis. Pattern Recognit. Workshop, p 34
Kim J, Grauman K (2009) Observe locally, infer globally: A space-time mrf for detecting abnormal activities with incremental updates. In: Conf. Comput. Vis. Pattern Recognit., pp 2921–2928
Krüger V, Kragic D, Geib C (2007) The meaning of action: a review on action recognition and mapping. Adv Robot 21:1473–1501
Kwon J, Lee KM (2012) A unified framework for event summarization and rare event detection. In: Conf. Comput. Vis. Pattern Recognit., pp 1266–1273
LK, KN (2009) Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: Conf. Comput. Vis. Pattern Recognit., pp 1446–1453
Lampert CH, Blaschko MB, Hofmann T (2008) Beyond sliding windows: Object localization by efficient subwindow search. In: Conf. Comput. Vis. Pattern Recognit., pp 1–8
Lee CK, Ho MF, Wen WS, Huang CL (2006) Abnormal event detection in video using n-cut clustering. In: J. Intell. Inf. Hiding Multimedia Signal Process., pp 407–410
Li W, Mahadevan V, Vasconcelos N (2013) Anomaly detection and localization in crowded scenes. IEEE Trans Pattern Anal Mach Intell 36:18–32
Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: Conf. Comput. Vis. Pattern Recognit., pp 1975–1981
Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: Conf. Comput. Vis. Pattern Recognit., pp 935–942
Nater F, Grabner H, Van Gool L (2010) Exploiting simple hierarchies for unsupervised human behavior analysis. In: Conf. Comput. Vis. Pattern Recognit., pp 2014–2020
Popoola O, Wang K (2012) Video-based abnormal human behavior recognition xa review. IEEE Trans Syst Man Cybern Soc:865–878
Rohstkhari MJ, Levine MD (2013) Human activity recognition in videos using a single example. Image Vis Comput 31:864–876
Rohstkhari MJ, Levine MD (2013) Online dominant and anomalous behavior detection in videos. In: Conf. Comput. Vis. Pattern Recognit., pp 2611–2618
Rublee E, Rabaud V, Konolige K, Bradski GR (2011) Orb: An efficient alternative to sift or surf. In: Int. Conf. Comput. Vis., pp 2564–2571
Saligrama V, Chen Z (2012) Video anomaly detection based on local statistical aggregates. In: Conf. Comput. Vis. Pattern Recognit., pp 2112–2119
Scholkopt B, Platt J, Shawe-Taylor J, Smola A, Williamson R (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13:1443–1471
Stauffer C, Grimson W (2000) Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell 22:747–757
Tran D, Yuan J (2011) Optimal spatio-temporal path discovery for video event detection. In: Conf. Comput. Vis. Pattern Recognit., pp 3321–3328
Tran D, Yang J, Forsyth D (2013) Video event detection: from subvolume localization to spatio-temporal path search. IEEE Trans Pattern Anal Mach Intell 36:404–416
Voulodimos AS, Kosmopoulos DI, Doulamis ND, Varvarigou TA (2014) A top-down event-driven approach for concurrent activity recognition. Multimed Tool Appl 69:293–311
Wang T, Snoussi H (2013) Histograms of optical flow orientation for abnormal events detection. In: IEEE Int. Workshop Perform. Eval. Track. Surveill., pp 45–52
Wiliem A, Madasu V, Boles W, Yarlagadda P (2008) Detecting uncommon trajectories. In: Digit. Image Comput. Tech. Appl., pp 398–404
Xiang T, Gong S (2008) Video behavior profiling for anomaly detection. IEEE Trans Pattern Anal Mach Intell 30:893–908
Yin J, Yang Q, Pan J (2008) Sensor-based abnormal human-activity detection. IEEE Trans Knowl Data Eng 20:1082–1090
Yuan J, Liu Z, Wu Y (2009) Discriminative subvolume search for efficient action detection. In: Conf. Comput. Vis. Pattern Recognit., pp 2442–2449
Zaharescu A, Wildes R (2010) Anomalous behaviour detection using spatiotemporal oriented energies, subset inclusion histogram comparison and event-driven processing. In: Eur. Conf. Comput. Vis., pp 563–576
Zhang D, Gatica-Perez D, Bengio S, McCowan I (2005) Semi-supervised adapted hmms for unusual event detection. In: Conf. Comput. Vis. Pattern Recognit., pp 611–618