An efficient spectral-collocation difference method for two-dimensional Schrödinger equation with Neumann boundary conditions
Tài liệu tham khảo
Griffiths, 1995
Hasegawa, 1989
Menyuk, 1987, Stability of solitons in birefringent optical fibers, I: Equal propagation amplitudes, Opt. Lett., 12, 614, 10.1364/OL.12.000614
Menyuk, 1988, Stability of solitons in birefringent optical fibers, II: Arbitrary amplitudes, J. Opt. Soc. Amer. B, 5, 392, 10.1364/JOSAB.5.000392
Pitaevskii, 2003
Abo-Shaeer, 2001, Observation of vortex lattices in Bose–Einstein condensates, Science, 292, 476, 10.1126/science.1060182
Zakharov, 1975, The nature of self-focusing singularity, Sov. Phys. JETP, 41, 465
Sulem, 1999
Bao, 2006, Dynamics of rotating Bose–Einstein condensates and its efficient and accurate numerical computation, SIAM J. Appl. Math., 66, 758, 10.1137/050629392
Cazenave, 2003, vol. 10
Markowich, 1978, Dynamics of classical solitons (in non-integrable systems), Phys. Lett. C, 35, 1
Gardner, 1993, B-spline finite element studies of the non-linear Schrödinger equation, Comput. Methods Appl. Mech. Engrg., 108, 303, 10.1016/0045-7825(93)90007-K
Karakashian, 1993, On optimal order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 30, 377, 10.1137/0730018
Akrivis, 1991, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59, 31, 10.1007/BF01385769
Karakashian, 1998, A space–time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method, Math. Comp., 67, 479, 10.1090/S0025-5718-98-00946-6
Xu, 2005, Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205, 72, 10.1016/j.jcp.2004.11.001
Dehghan, 2008, Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method, Internat. J. Numer. Methods Engrg., 76, 501, 10.1002/nme.2338
Dehghan, 2008, The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation, Eng. Anal. Bound. Elem., 32, 747, 10.1016/j.enganabound.2007.11.005
Zhang, 1995, Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme, Appl. Math. Comput., 71, 165
Wang, 2005, Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations, Appl. Math. Comput., 170, 17
Subasi, 2002, On the finite difference schemes for the numerical solution of two dimensional Schrödinger equations, Numer. Methods Partial Differential Equations, 18, 752, 10.1002/num.10029
Gao, 2011, Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61, 593, 10.1016/j.apnum.2010.12.004
Xu, 2012, Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrödinger equation, Comput. Phys. Comm., 183, 1082, 10.1016/j.cpc.2012.01.006
Wang, 2013, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243, 382, 10.1016/j.jcp.2013.03.007
Thalhammer, 2008, High-order exponential operator splitting methods for timedependent Schrödinger equations, SIAM J. Numer. Anal., 46, 2022, 10.1137/060674636
Bao, 2005, A fourth-order time-splitting Laguerre–Hermite pseudospectral method for Bose–Einstein condensates, SIAM J. Sci. Comput., 26, 2010, 10.1137/030601211
Pathria, 1990, Pseudo-spectral solution of nonlinear Schrödinger equations, J. Comput. Phys., 87, 108, 10.1016/0021-9991(90)90228-S
Dehghan, 2010, Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method, Numer. Methods Partial Differential Equations, 26, 979, 10.1002/num.20468
Bao, 2009, A generalized-Laguerre–Fourier–Hermite pseudospectral method for computing the dynamics of rotating Bose–Einstein condensates, SIAM J. Sci. Comput., 31, 3685, 10.1137/080739811
Gong, 2017, A conservative fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys., 328, 354, 10.1016/j.jcp.2016.10.022
Markowich, 1999, Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit, Numer. Math., 81, 595, 10.1007/s002110050406
Chang, 1999, Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys., 148, 397, 10.1006/jcph.1998.6120
Bao, 2002, On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175, 487, 10.1006/jcph.2001.6956
Caliari, 2009, High-order time-splitting Hermite and Fourier spectral methods for the Gross–Pitaevskii equation, J. Comput. Phys., 228, 822, 10.1016/j.jcp.2008.10.008
Bao, 2013, Mathematical theory and numerical methods for Bose–Einstein condensation, Kinet. Relat. Models, 6, 1, 10.3934/krm.2013.6.1
Bao, 2014, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation, J. Comput. Phys., 235, 423, 10.1016/j.jcp.2012.10.054
Liao, 2006, A fourth-order compact algorithm for nonlinear reactiondiffusion equations with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 22, 600, 10.1002/num.20111
Zhao, 2007, Fourth-order compact schemes of a heat conduction problem with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 23, 949, 10.1002/num.20200
Zhao, 2008, Fourth-order compact schemes for solving multidimensional heat problems with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 24, 165, 10.1002/num.20255
Sun, 2013, Compact difference schemes for heat equation with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 29, 1459, 10.1002/num.21760
Javidi, 2007, Spectral collocation method for parabolic partial differential equations with Neumann boundary conditions, Appl. Math. Sci., 1, 211
Atkinson, 2011, A spectral method for elliptic equations: the Neumann problem, Adv. Comput. Math., 34, 295, 10.1007/s10444-010-9154-3
Yu, 2012, Jacobi spectral method with essential imposition of Neumann boundary condition, Appl. Numer. Math., 62, 956, 10.1016/j.apnum.2012.03.004
Smith, 2015, Implementation of Neumann boundary condition with influence matrix method for viscous annular flow using pseudospectral collocation, J. Comput. Appl. Math., 285, 100, 10.1016/j.cam.2015.02.012
Gong, 2014, Multi-symplectic Fourier pseudospectral method for the Kawahara equation, Commun. Comput. Phys., 16, 35, 10.4208/cicp.090313.041113a
Bao, 2003, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation, J. Comput. Phys., 187, 318, 10.1016/S0021-9991(03)00102-5
Ming, 2014, An efficient spectral method for computing dynamics of rotating two-component Bose–Einstein condensates via coordinate transformation, J. Comput. Phys., 258, 538, 10.1016/j.jcp.2013.10.044