An efficient spectral-collocation difference method for two-dimensional Schrödinger equation with Neumann boundary conditions

Computers & Mathematics with Applications - Tập 79 - Trang 2322-2335 - 2020
Xin Li1,2, Luming Zhang1
1Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, Jiangsu, PR China
2Department of Mathematics, Anhui Science and Technology University, Fengyang, 233100, Anhui, PR China

Tài liệu tham khảo

Griffiths, 1995 Hasegawa, 1989 Menyuk, 1987, Stability of solitons in birefringent optical fibers, I: Equal propagation amplitudes, Opt. Lett., 12, 614, 10.1364/OL.12.000614 Menyuk, 1988, Stability of solitons in birefringent optical fibers, II: Arbitrary amplitudes, J. Opt. Soc. Amer. B, 5, 392, 10.1364/JOSAB.5.000392 Pitaevskii, 2003 Abo-Shaeer, 2001, Observation of vortex lattices in Bose–Einstein condensates, Science, 292, 476, 10.1126/science.1060182 Zakharov, 1975, The nature of self-focusing singularity, Sov. Phys. JETP, 41, 465 Sulem, 1999 Bao, 2006, Dynamics of rotating Bose–Einstein condensates and its efficient and accurate numerical computation, SIAM J. Appl. Math., 66, 758, 10.1137/050629392 Cazenave, 2003, vol. 10 Markowich, 1978, Dynamics of classical solitons (in non-integrable systems), Phys. Lett. C, 35, 1 Gardner, 1993, B-spline finite element studies of the non-linear Schrödinger equation, Comput. Methods Appl. Mech. Engrg., 108, 303, 10.1016/0045-7825(93)90007-K Karakashian, 1993, On optimal order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 30, 377, 10.1137/0730018 Akrivis, 1991, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59, 31, 10.1007/BF01385769 Karakashian, 1998, A space–time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method, Math. Comp., 67, 479, 10.1090/S0025-5718-98-00946-6 Xu, 2005, Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205, 72, 10.1016/j.jcp.2004.11.001 Dehghan, 2008, Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method, Internat. J. Numer. Methods Engrg., 76, 501, 10.1002/nme.2338 Dehghan, 2008, The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation, Eng. Anal. Bound. Elem., 32, 747, 10.1016/j.enganabound.2007.11.005 Zhang, 1995, Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme, Appl. Math. Comput., 71, 165 Wang, 2005, Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations, Appl. Math. Comput., 170, 17 Subasi, 2002, On the finite difference schemes for the numerical solution of two dimensional Schrödinger equations, Numer. Methods Partial Differential Equations, 18, 752, 10.1002/num.10029 Gao, 2011, Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61, 593, 10.1016/j.apnum.2010.12.004 Xu, 2012, Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrödinger equation, Comput. Phys. Comm., 183, 1082, 10.1016/j.cpc.2012.01.006 Wang, 2013, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243, 382, 10.1016/j.jcp.2013.03.007 Thalhammer, 2008, High-order exponential operator splitting methods for timedependent Schrödinger equations, SIAM J. Numer. Anal., 46, 2022, 10.1137/060674636 Bao, 2005, A fourth-order time-splitting Laguerre–Hermite pseudospectral method for Bose–Einstein condensates, SIAM J. Sci. Comput., 26, 2010, 10.1137/030601211 Pathria, 1990, Pseudo-spectral solution of nonlinear Schrödinger equations, J. Comput. Phys., 87, 108, 10.1016/0021-9991(90)90228-S Dehghan, 2010, Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method, Numer. Methods Partial Differential Equations, 26, 979, 10.1002/num.20468 Bao, 2009, A generalized-Laguerre–Fourier–Hermite pseudospectral method for computing the dynamics of rotating Bose–Einstein condensates, SIAM J. Sci. Comput., 31, 3685, 10.1137/080739811 Gong, 2017, A conservative fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys., 328, 354, 10.1016/j.jcp.2016.10.022 Markowich, 1999, Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit, Numer. Math., 81, 595, 10.1007/s002110050406 Chang, 1999, Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys., 148, 397, 10.1006/jcph.1998.6120 Bao, 2002, On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175, 487, 10.1006/jcph.2001.6956 Caliari, 2009, High-order time-splitting Hermite and Fourier spectral methods for the Gross–Pitaevskii equation, J. Comput. Phys., 228, 822, 10.1016/j.jcp.2008.10.008 Bao, 2013, Mathematical theory and numerical methods for Bose–Einstein condensation, Kinet. Relat. Models, 6, 1, 10.3934/krm.2013.6.1 Bao, 2014, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation, J. Comput. Phys., 235, 423, 10.1016/j.jcp.2012.10.054 Liao, 2006, A fourth-order compact algorithm for nonlinear reactiondiffusion equations with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 22, 600, 10.1002/num.20111 Zhao, 2007, Fourth-order compact schemes of a heat conduction problem with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 23, 949, 10.1002/num.20200 Zhao, 2008, Fourth-order compact schemes for solving multidimensional heat problems with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 24, 165, 10.1002/num.20255 Sun, 2013, Compact difference schemes for heat equation with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 29, 1459, 10.1002/num.21760 Javidi, 2007, Spectral collocation method for parabolic partial differential equations with Neumann boundary conditions, Appl. Math. Sci., 1, 211 Atkinson, 2011, A spectral method for elliptic equations: the Neumann problem, Adv. Comput. Math., 34, 295, 10.1007/s10444-010-9154-3 Yu, 2012, Jacobi spectral method with essential imposition of Neumann boundary condition, Appl. Numer. Math., 62, 956, 10.1016/j.apnum.2012.03.004 Smith, 2015, Implementation of Neumann boundary condition with influence matrix method for viscous annular flow using pseudospectral collocation, J. Comput. Appl. Math., 285, 100, 10.1016/j.cam.2015.02.012 Gong, 2014, Multi-symplectic Fourier pseudospectral method for the Kawahara equation, Commun. Comput. Phys., 16, 35, 10.4208/cicp.090313.041113a Bao, 2003, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation, J. Comput. Phys., 187, 318, 10.1016/S0021-9991(03)00102-5 Ming, 2014, An efficient spectral method for computing dynamics of rotating two-component Bose–Einstein condensates via coordinate transformation, J. Comput. Phys., 258, 538, 10.1016/j.jcp.2013.10.044