An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model

Acta Geotechnica - Tập 12 Số 4 - Trang 849-867 - 2017
Zhen‐Yu Yin1, Yin-Fu Jin2, Shui‐Long Shen3, Hongwei Huang4
1Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
2GeM UMR CNRS, 6183, Ecole Centrale de Nantes, Lunam University, Nantes, France
3State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean, and Civil Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, China
4Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Biarez J, Hicher P-Y (1994) Elementary mechanics of soil behaviour: saturated remoulded soils. AA Balkema, Rotterdam

Calvello M, Finno RJ (2004) Selecting parameters to optimize in model calibration by inverse analysis. Comput Geotech 31(5):410–424. doi: 10.1016/j.compgeo.2004.03.004

Chang CS, Yin ZY (2010) Micromechanical modeling for inherent anisotropy in granular materials. J Eng Mech ASCE 136(7):830–839. doi: 10.1061/(asce)em.1943-7889.0000125

Chuang Y-C, Chen C-T, Hwang C (2015) A real-coded genetic algorithm with a direction-based crossover operator. Inf Sci 305(1):320–348

Dan HB (2005) Time dependent behavior of natural soft clays. Ph.D. thesis, Zhejiang University, Hangzhou, China

Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New York

Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9(2):115–148

Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inform 26(4):30–45

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

Deep K, Thakur M (2007) A new mutation operator for real coded genetic algorithms. Appl Math Comput 193(1):211–230

Gens A, Nova R (1993) Conceptual bases for a constitutive model for bonded soils and weak rocks. Geotech Eng Hard Soils Soft Rocks 1(1):485–494

Goldberg DE (1991) Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Syst 5(2):139–168

Graham J, Houlsby G (1983) Anisotropic elasticity of a natural clay. Geotechnique 33(2):165–180

Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif Intell Rev 12(4):265–319

Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge

Javadi A, Farmani R, Toropov V, Snee C (1999) Identification of parameters for air permeability of shotcrete tunnel lining using a genetic algorithm. Comput Geotech 25(1):1–24

Jiang J, Ling HI, Kaliakin VN, Zeng X, Hung C (2016) Evaluation of an anisotropic elastoplastic–viscoplastic bounding surface model for clays. Acta Geotech. doi: 10.1007/s11440-016-0471-7

Jin Y, Yin Z, Shen S, Hicher P (2016) Selection of sand models and identification of parameters using an enhanced genetic algorithm. Int J Numer Anal Methods Geomech. doi: 10.1002/nag.2487

Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Investigation into MOGA for identifying parameters of a critical state based sand model and parameters correlation by factor analysis. Acta Geotech. doi: 10.1007/s11440-015-0425-5

Karstunen M, Yin ZY (2010) Modelling time-dependent behaviour of Murro test embankment. Geotechnique 60(10):735–749

Kimoto S, Oka F (2005) An elasto-viscoplastic model for clay considering destructuralization and consolidation analysis of unstable behavior. Soils Found 45(2):29–42

Lecampion B, Constantinescu A, Nguyen Minh D (2002) Parameter identification for lined tunnels in a viscoplastic medium. Int J Numer Anal Methods Geomech 26(12):1191–1211. doi: 10.1002/nag.241

Leroueil S, Kabbaj M, Tavenas F, Bouchard R (1985) Stress–strain–strain–rate relation for the compressibility of sensitive natural clays. Geotechnique 35(2):159–180

Levasseur S, Malécot Y, Boulon M, Flavigny E (2008) Soil parameter identification using a genetic algorithm. Int J Numer Anal Methods Geomech 32(2):189–213. doi: 10.1002/nag.614

Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs. Springer, New York

Mokhade AS, Kakde OG (2014) Overview of selection schemes in real-coded genetic algorithms and their applications. J Ind Intell Inf 2(1):71–77

Moreira N, Miranda T, Pinheiro M, Fernandes P, Dias D, Costa L, Sena-Cruz J (2013) Back analysis of geomechanical parameters in underground works using an evolution strategy algorithm. Tunn Undergr Space Technol 33:143–158

Oka F, Takada N, Shimono K, Higo Y, Kimoto S (2016) A large-scale excavation in soft Holocene deposit and its elasto-viscoplastic analysis. Acta Geotech 11:625–642

Pal S, Wije Wathugala G, Kundu S (1996) Calibration of a constitutive model using genetic algorithms. Comput Geotech 19(4):325–348

Papon A, Riou Y, Dano C, Hicher PY (2012) Single-and multi-objective genetic algorithm optimization for identifying soil parameters. Int J Numer Anal Methods Geomech 36(5):597–618. doi: 10.1002/nag.1019

Poles S, Fu Y, Rigoni E (2009) The effect of initial population sampling on the convergence of multi-objective genetic algorithms. In: Barichard V, Ehrgott M, Gandibleux X, T'Kindt V (eds) Multiobjective programming and goal programming. Springer, New York, pp 123–133

Pratihar DK (2007) Soft computing. Alpha Science International, UK

Rocchi G, Fontana M, Da Prat M (2003) Modelling of natural soft clay destruction processes using viscoplasticity theory. Geotechnique 53(8):729–745

Rokonuzzaman M, Sakai T (2010) Calibration of the parameters for a hardening–softening constitutive model using genetic algorithms. Comput Geotech 37(4):573–579. doi: 10.1016/j.compgeo.2010.02.007

Roscoe KH, Burland JB (1968) On the generalized stress–strain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, London, UK, pp 535–609

Sobol IM (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7(4):86–112

Vardakos S, Gutierrez M, Xia C (2012) Parameter identification in numerical modeling of tunneling using the differential evolution genetic algorithm (DEGA). Tunn Undergr Space Technol 28:109–123. doi: 10.1016/j.tust.2011.10.003

Wang L-Z, Yin Z-Y (2012) Stress dilatancy of natural soft clay under an undrained creep condition. Int J Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0000271

Yao YP, Sun DA (2000) Application of Lade’s criterion to Cam–Clay model. J Eng Mech ASCE 126(1):112–119

Yao YP, Hou W, Zhou AN (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 59(5):451–469

Yao YP, Kong LM, Zhou AN (2015) Time-dependent unified hardening model: three-dimensional elasto-visco-plastic constitutive model for clays. J Eng Mech ASCE 141(6):0414162

Yepes V, Alcala J, Perea C, González-Vidosa F (2008) A parametric study of optimum earth-retaining walls by simulated annealing. Eng Struct 30(3):821–830

Yin ZY, Chang CS (2009) Microstructural modelling of stress-dependent behaviour of clay. Int J Solids Struct 46(6):1373–1388

Yin ZY, Hicher PY (2008) Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. Int J Numer Anal Methods Geomech 32(12):1515–1535

Yin ZY, Karstunen M (2011) Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration. Acta Mech Solida Sin 24(3):216–230

Yin ZY, Wang JH (2012) A one-dimensional strain-rate based model for soft structured clays. Sci China Technol Sci 55(1):90–100. doi: 10.1007/s11431-011-4513-y

Yin ZY, Chang CS, Karstunen M, Hicher PY (2010) An anisotropic elastic-viscoplastic model for soft clays. Int J Solids Struct 47(5):665–677

Yin ZY, Chang CS, Hicher PY (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14–15):1933–1951. doi: 10.1016/j.ijsolstr.2010.03.028

Yin ZY, Karstunen M, Chang CS, Koskinen M, Lojander M (2011) Modeling time-dependent behavior of soft sensitive clay. J Geotech Geoenviron Eng 137(11):1103–1113. doi: 10.1061/(asce)gt.1943-5606.0000527

Yin Z-Y, Chang CS, Hicher PY, Wang JH (2011) Micromechanical analysis for the behavior of stiff clay. Acta Mech Sin 27(6):1013–1022

Yin Z-Y, Yin J-H, Huang H-W (2015) Rate-dependent and long-term yield stress and strength of soft wenzhou marine clay: experiments and modeling. Mar Georesour Geotechnol 33(1):79–91

Zeng LL (2010) Deformation mechanism and compression model of natural clays. Ph.D. thesis, Nanjing China, Southeast University

Zhu QY, Yin Z-Y, Hicher PY, Shen SL (2016) Nonlinearity of one-dimensional creep characteristics of soft clays. Acta Geotech. doi: 10.1007/s11440-015-0411-y

Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben AE, Bäck T, Schoenauer M, Schwefel H-P (eds) Parallel problem solving from nature—PPSN V. Springer, New York, pp 292–301