An efficient numerical scheme for Burgers' equation

Applied Mathematics and Computation - Tập 95 Số 1 - Trang 37-50 - 1998
Y.C. Hon1, Xian-zhong Mao2
1Department of Mathematics, City University of Hong Kong, Hong Kong, China
2Zhejiang Provincial Institute of Estuarine and Coastal Engineering Research, China#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Burgers, 1940, Application of a model system to illustrate some points of the statistical theory of free turbulence, 43, 2

Cole, 1951, On a quasi-linear parabolic equation occuring in aerodynamics, Quart. Appl. Math., 9, 225, 10.1090/qam/42889

Jain, 1978, Numerical solutions of coupled Burgers' equation, Int. J. Non-linear Mech., 13, 213, 10.1016/0020-7462(78)90024-0

Hirsh, 1975, Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys., 19, 90, 10.1016/0021-9991(75)90118-7

Ciment, 1978, The operator compact implicit method for parabolic equations, J. Comput. Phys., 28, 135, 10.1016/0021-9991(78)90031-1

Arminjon, 1978, A finite element method for Burgers' equation in hydrodynamics, Internat. J. Numer. Methods Eng., 12, 415, 10.1002/nme.1620120304

Jain, 1979, Splitting-up technique for Burgers' equations, Indian J. Pure Appl. Math., 10, 1543

Iskandar, 1992, Some numerical experiments on the splitting of Burgers' equation, Numer. Methods Partial Differential Equations, 8, 267, 10.1002/num.1690080303

Herbst, 1984, Generalized Petrov-Galerkin methods for the numerical solution of Burgers' equation, Int. J. Numer. Methods Eng., 20, 1273, 10.1002/nme.1620200708

Caldwell, 1987, Solution of Burgers' equation for large Reynolds number using finite elements with moving nodes, J. Appl. Math. Modelling, 11, 211, 10.1016/0307-904X(87)90005-9

Ortiz, 1986, A bidimensional Tau-elements method for the numerical solution of nonlinear partial differential equations with an application to Burgers' equation, Comput. Math. Appl., 12B, 1225, 10.1016/0898-1221(86)90247-6

Sincovec, 1975, Software for nonlinear partial differential equations, ACM TOMS, 1, 222, 10.1145/355644.355649

Hardy, 1971, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 176, 1905, 10.1029/JB076i008p01905

Franke, 1982, Scattered data interpolation: Test of some methods, Math. Comput., 38, 181

Kansa, 1990, Multiquadrics — a scattered data approximation scheme with applications to computational fluid dynamics — I, Comput. Math. Appl., 19, 127, 10.1016/0898-1221(90)90270-T

Kansa, 1990, Multiquadrics — a scattered data approximation scheme with applications to computational fluid dynamics — II, Comput. Math. Appl., 19, 147, 10.1016/0898-1221(90)90271-K

Madych, 1988, Multivariate interpolation and conditionally positive definite functions I, J. Approx. Theory Appl., 4, 77

Caldwell, 1994, Numerical approaches to the nonlinear Burgers' equation, J. Math. Sci., 5, 19

Tarwater, 1985, A parameter study of Hardy's multiquadric method for scattered data interpolation, UCRL-54670

Golberg, 1994, On a method of Atkinson for evaluating domain integrals in the boundary element method, Appl. Math. Comput., 60, 125, 10.1016/0096-3003(94)90099-X

Bogomonly, 1985, Fundamental solutions method for elliptic boundary value problems, SIAM J. Numer. Anal., 22, 644, 10.1137/0722040

Cheng, 1987, Delta-trigonometric and Spline Methods Using the Single-Layer Potential Representation

Christiansen, 1996, The conditioning of some numerical methods for first kind of boundary integral equations, Comput. Appl. Math., 67, 43, 10.1016/0377-0427(94)00121-9

Caldwell, 1982, Solution of Burgers' equation with a large Reynolds number, Appl. Math. Modelling, 6, 381, 10.1016/S0307-904X(82)80102-9

1994

Christie, 1978, Upwinding of high order Galerkin methods in conduction-convection problems, Int. J. Numer. Methods Eng., 12, 1764, 10.1002/nme.1620121113

Michell, 1980, The Finite Difference Method in Partial Differential Equations, 233

Carlson, 1991, The parameter R2 in multiquadric and related interpolations, Comput. Math. Appl., 21, 29, 10.1016/0898-1221(91)90123-L

Moridis, 1994, The Laplace transform multiquadrics method: highly accurate scheme for the numerical solution of linear partial differential equations, Appl. Sci. Comput., 1, 375