An efficient multiscale method for 2D dynamic analysis of the coupling system of fluid and heterogeneous structure
Tài liệu tham khảo
Kanouté, 2009, Multiscale methods for composites: a review, Arch. Comput. Methods Eng., 16, 31, 10.1007/s11831-008-9028-8
Pinho-da-Cruz, 2009, Asymptotic homogenisation in linear elasticity. Part I: mathematical formulation and finite element modelling, Comput. Mater. Sci., 45, 1073, 10.1016/j.commatsci.2009.02.025
Oliveira, 2009, Asymptotic homogenisation in linear elasticity. Part II: finite element procedures and multiscale applications, Computat. Mater. Sci., 45, 1081, 10.1016/j.commatsci.2009.01.027
Otero, 2005, Dynamical behavior of a layered piezocomposite using the asymptotic homogenization method, Mech. Mater., 37, 33, 10.1016/j.mechmat.2003.12.004
Challagulla, 2007, Asymptotic homogenization modeling of thin composite network structures, Compos. Struct., 79, 432, 10.1016/j.compstruct.2006.02.017
Clayton, 2006, An atomistic-to-continuum framework for nonlinear crystal mechanics based on asymptotic homogenization, J. Mech. Phys. Solids, 54, 1604, 10.1016/j.jmps.2006.02.004
Berger, 2003, Finite element and asymptotic homogenization methods applied to smart composite materials, Comput. Mech., 33, 61, 10.1007/s00466-003-0500-x
Zhang, 2007, Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach, Int. J. Numer. Methods Eng., 69, 87, 10.1002/nme.1757
Chen, 2004, An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates, Comput. Struct., 82, 373, 10.1016/j.compstruc.2003.10.021
Xia, 2003, A unified periodical boundary conditions for representative volume elements of composites and applications, Int. J. Solids Struct., 40, 1907, 10.1016/S0020-7683(03)00024-6
Kanit, 2003, Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., 40, 3647, 10.1016/S0020-7683(03)00143-4
Shan, 2002, Representative volume element for non-uniform micro-structure, Comput. Mater. Sci., 24, 361, 10.1016/S0927-0256(01)00257-9
Pensée, 2007, Generalized self-consistent estimation of the apparent isotropic elastic moduli and minimum representative volume element size of heterogeneous media, Int. J. Solids Struct., 44, 2225, 10.1016/j.ijsolstr.2006.07.003
Galli, 2012, Numerical and statistical estimates of the representative volume element of elastoplastic random composites, Eur. J. Mech.—A/Solids, 33, 31, 10.1016/j.euromechsol.2011.07.010
Dondero, 2011, Effective thermal conductivity of functionally graded random micro-heterogeneous materials using representative volume element and BEM, Int. J. Heat Mass Transfer, 54, 3874, 10.1016/j.ijheatmasstransfer.2011.04.041
W.E., 2003, Analysis of the heterogeneous multiscale method for ordinary differential equations, Commun. Math. Sci., 1, 423, 10.4310/CMS.2003.v1.n3.a3
W.E, 2004, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Am. Math. Soc., 18, 121, 10.1090/S0894-0347-04-00469-2
W.E, 2003, Heterogeneous multiscale method: a general methodology for multiscale modeling, Phys. Rev. B, 67
Xing, 2010, A multiscale eigenelement method and its application to periodical composite structures, Compos. Struct., 92, 2265, 10.1016/j.compstruct.2009.08.006
Xing, 2011, An eigenelement method of periodical composite structures, Compos. Struct., 93, 502, 10.1016/j.compstruct.2010.08.029
Hou, 1999, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comput., 68, 913, 10.1090/S0025-5718-99-01077-7
Hou, 1997, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169, 10.1006/jcph.1997.5682
Zhang, 2009, Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media, Adv. Water Resour., 32, 268, 10.1016/j.advwatres.2008.11.002
Zhang, 2011, A new multiscale computational method for elasto-plastic analysis of heterogeneous materials, Comput. Mech., 49, 149, 10.1007/s00466-011-0634-1
Zhang, 2013, A uniform multiscale method for 2D static and dynamic analyses of heterogeneous materials, Int. J. Numer. Methods Eng., 94, 714, 10.1002/nme.4404
Liu, 2013, A p-adaptive multi-node extended multiscale finite element method for 2D elastostatic analysis of heterogeneous materials, Comput. Mater. Sci., 73, 79, 10.1016/j.commatsci.2013.02.025
Muller, 1981, Simplified analysis of linear fluid–structure interaction, Int. J. Numer. Methods Eng., 17, 113, 10.1002/nme.1620170109
Zienkiewicz, 1978, Fluid–structure dynamic interaction and wave forces—an introduction to numerical treatment, Int. J. Numer. Methods Eng., 13, 1, 10.1002/nme.1620130102
Liu, 1982, Coupling effect between liquid sloshing and flexible fluid-filled systems, Nucl. Eng. Des., 72, 345, 10.1016/0029-5493(82)90048-6
Mitra, 2008, 2D simulation of fluid–structure interaction using finite element method, Finite Elem. Anal. Des., 45, 52, 10.1016/j.finel.2008.07.006