An efficient multiscale method for 2D dynamic analysis of the coupling system of fluid and heterogeneous structure

Finite Elements in Analysis and Design - Tập 85 - Trang 59-72 - 2014
Hui Liu1,2, Hongwu Zhang1
1Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, PR China
2Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, PR China

Tài liệu tham khảo

Kanouté, 2009, Multiscale methods for composites: a review, Arch. Comput. Methods Eng., 16, 31, 10.1007/s11831-008-9028-8 Pinho-da-Cruz, 2009, Asymptotic homogenisation in linear elasticity. Part I: mathematical formulation and finite element modelling, Comput. Mater. Sci., 45, 1073, 10.1016/j.commatsci.2009.02.025 Oliveira, 2009, Asymptotic homogenisation in linear elasticity. Part II: finite element procedures and multiscale applications, Computat. Mater. Sci., 45, 1081, 10.1016/j.commatsci.2009.01.027 Otero, 2005, Dynamical behavior of a layered piezocomposite using the asymptotic homogenization method, Mech. Mater., 37, 33, 10.1016/j.mechmat.2003.12.004 Challagulla, 2007, Asymptotic homogenization modeling of thin composite network structures, Compos. Struct., 79, 432, 10.1016/j.compstruct.2006.02.017 Clayton, 2006, An atomistic-to-continuum framework for nonlinear crystal mechanics based on asymptotic homogenization, J. Mech. Phys. Solids, 54, 1604, 10.1016/j.jmps.2006.02.004 Berger, 2003, Finite element and asymptotic homogenization methods applied to smart composite materials, Comput. Mech., 33, 61, 10.1007/s00466-003-0500-x Zhang, 2007, Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach, Int. J. Numer. Methods Eng., 69, 87, 10.1002/nme.1757 Chen, 2004, An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates, Comput. Struct., 82, 373, 10.1016/j.compstruc.2003.10.021 Xia, 2003, A unified periodical boundary conditions for representative volume elements of composites and applications, Int. J. Solids Struct., 40, 1907, 10.1016/S0020-7683(03)00024-6 Kanit, 2003, Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., 40, 3647, 10.1016/S0020-7683(03)00143-4 Shan, 2002, Representative volume element for non-uniform micro-structure, Comput. Mater. Sci., 24, 361, 10.1016/S0927-0256(01)00257-9 Pensée, 2007, Generalized self-consistent estimation of the apparent isotropic elastic moduli and minimum representative volume element size of heterogeneous media, Int. J. Solids Struct., 44, 2225, 10.1016/j.ijsolstr.2006.07.003 Galli, 2012, Numerical and statistical estimates of the representative volume element of elastoplastic random composites, Eur. J. Mech.—A/Solids, 33, 31, 10.1016/j.euromechsol.2011.07.010 Dondero, 2011, Effective thermal conductivity of functionally graded random micro-heterogeneous materials using representative volume element and BEM, Int. J. Heat Mass Transfer, 54, 3874, 10.1016/j.ijheatmasstransfer.2011.04.041 W.E., 2003, Analysis of the heterogeneous multiscale method for ordinary differential equations, Commun. Math. Sci., 1, 423, 10.4310/CMS.2003.v1.n3.a3 W.E, 2004, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Am. Math. Soc., 18, 121, 10.1090/S0894-0347-04-00469-2 W.E, 2003, Heterogeneous multiscale method: a general methodology for multiscale modeling, Phys. Rev. B, 67 Xing, 2010, A multiscale eigenelement method and its application to periodical composite structures, Compos. Struct., 92, 2265, 10.1016/j.compstruct.2009.08.006 Xing, 2011, An eigenelement method of periodical composite structures, Compos. Struct., 93, 502, 10.1016/j.compstruct.2010.08.029 Hou, 1999, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comput., 68, 913, 10.1090/S0025-5718-99-01077-7 Hou, 1997, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169, 10.1006/jcph.1997.5682 Zhang, 2009, Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media, Adv. Water Resour., 32, 268, 10.1016/j.advwatres.2008.11.002 Zhang, 2011, A new multiscale computational method for elasto-plastic analysis of heterogeneous materials, Comput. Mech., 49, 149, 10.1007/s00466-011-0634-1 Zhang, 2013, A uniform multiscale method for 2D static and dynamic analyses of heterogeneous materials, Int. J. Numer. Methods Eng., 94, 714, 10.1002/nme.4404 Liu, 2013, A p-adaptive multi-node extended multiscale finite element method for 2D elastostatic analysis of heterogeneous materials, Comput. Mater. Sci., 73, 79, 10.1016/j.commatsci.2013.02.025 Muller, 1981, Simplified analysis of linear fluid–structure interaction, Int. J. Numer. Methods Eng., 17, 113, 10.1002/nme.1620170109 Zienkiewicz, 1978, Fluid–structure dynamic interaction and wave forces—an introduction to numerical treatment, Int. J. Numer. Methods Eng., 13, 1, 10.1002/nme.1620130102 Liu, 1982, Coupling effect between liquid sloshing and flexible fluid-filled systems, Nucl. Eng. Des., 72, 345, 10.1016/0029-5493(82)90048-6 Mitra, 2008, 2D simulation of fluid–structure interaction using finite element method, Finite Elem. Anal. Des., 45, 52, 10.1016/j.finel.2008.07.006