Một phương pháp hiệu quả để phát hiện đa màu sắc sử dụng ngưỡng tối ưu toàn cầu cho phân tích hình ảnh

Multimedia Tools and Applications - Tập 80 - Trang 18969-18991 - 2021
Lalit Mohan Goyal1, Mamta Mittal2, Munish Kumar3, Bhavneet Kaur4, Meenakshi Sharma4, Amit Verma5, Iqbaldeep Kaur5
1Department of Computer Engineering, J.C. Bose University of Science & Technology, YMCA, Faridabad, India
2Department of CSE, G B Pant Government Engineering College, New Delhi, India
3Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
4University Institute of Computing, Chandigarh University, Mohali, India
5Department of Computer Science and Engineering, Chandigarh Group of Colleges, Chandigarh, India

Tóm tắt

Phân đoạn hình ảnh là một bước quan trọng trong phân tích hình ảnh, nhận diện mẫu, thị giác cấp thấp, phân tích dữ liệu y tế, theo dõi đối tượng, nhiệm vụ nhận dạng và nắm bắt vật thể trong lĩnh vực robot. Đây là một công việc khó khăn và đòi hỏi trong xử lý hình ảnh, điều khiển chất lượng của các kết quả cuối cùng trong phân tích hình ảnh. Phương pháp này nhằm cải thiện khả năng phát hiện màu sắc bằng cách sử dụng các công thức trong mảng RGB. Đầu tiên, màu sắc mục tiêu được chọn và xác định vị trí màu mong muốn bằng cách sử dụng kỹ thuật cửa sổ trượt. Sau đó, ngưỡng đã được tính toán bằng cách sử dụng tổng của phương sai bên trong và giữa các lớp của màu sắc được chọn. Phương pháp đề xuất vượt qua những hạn chế của việc phân đoạn hình ảnh bằng ngưỡng đa cấp truyền thống, bao gồm độ phức tạp, sự thiếu chính xác, và tính ổn định. Công việc này được thử nghiệm trên nhiều loại hình ảnh khác nhau như hình ảnh hai chiều, hình ảnh chất lượng thấp, hình ảnh phức tạp, hình ảnh mờ và hình ảnh y tế. Kết quả mô phỏng cho thấy độ chính xác tối đa và thời gian tính toán tối thiểu so với các phương pháp khác.

Từ khóa

#phân đoạn hình ảnh #phát hiện màu sắc #ngưỡng tối ưu #xử lý hình ảnh #phân tích dữ liệu y tế #thị giác máy móc

Tài liệu tham khảo

Alsultanny YA (2010) Color image segmentation to the RGB and HSI model based on region growing algorithm. Recent Advances in Computer Engineering and Applications 63–684 Arora S, Acharya J, Verma A, Panigrahi PK (2008) Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognit Lett 29(2):119–125 Batavia PH, Singh S (2001) Obstacle detection using adaptive color segmentation and color stereo homography. In: Proceeding of IEEE International Conference on Robotics & Automation, pp. 705–710 Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115–147 Chavolla E, Valdivia A, Diaz P, Zaldivar D, Cuevas E, Perez MA (2018) Improved unsupervised color segmentation using a modified HSV color model and a bagging procedure in K-means ++ algorithm. Math Probl Eng 2018:1–23 Chen J, Pappast TN (2002) Adaptive image segmentation based on color and texture. In: IEEE international Conference on Image Processing, pp. 777–780 Chiu KY, Lin SF (2005) Lane detection using color-based segmentation. In: IEEE Proceedings Intelligent Vehicles Symposium 706–711 Cortes MAD, Cuevas E, Rojas R (2017) Color segmentation using LVQ neural networks. In: Engineering Applications of Soft Computing 59–74 Hassan MR, Ema RR, Islam T (2017) Color image segmentation using automated K-means clustering with RGB and HSV color spaces. Global Journal of Computer Science and Technology F Graphics and Visio 17(2):32-41 Ghamisi P, Couceiro MS, Benediktsson JA (2013) Classification of hyperspectiral images with binary fractional order drawinian PSO and random forests. Image Signal Process Remote Sens 8892:1–8 Ghamisi P, Couceiro MS, Martins FML, Benediktsson JA (2014) Multilevel image segmentation based on fractional-order darwinian particle swarm optimization. IEEE Transactions on geoscience and remote sensing 52(5): 2382-2394 Goel V, Singhal S, Kole S, Jain T (2017) Specific Color Detection in Images using RGB Modelling in MATLAB. Int J Comput Appl 161(8):38–42 Gothwal R, Gupta S, Gupta D, Dahiya AK (2014) Color image segmentation algorithm based on RGB channels. In: IEEE, International Conference on Reliability, Infocom Technologies and Optimization, pp. 1–5 He Y, Wang H, Zhang B (2004) Color-Based Road Detection in Urban Traffic Scenes. IEEE Trans Intell Transp Syst 5(4):309–318 Hyams J, Powell MW, Murphy R (2000) Cooperative Navigation of Micro-Rovers Using Color Segmentation. J Auton Robot 9(1):7–16 Kaur M, Sharma R (2015) Quality detection of fruits by using ANN technique. IOSR J Electron Commun Eng 10(4):35–41 Marr D, Nishihara HK (1978) Representation and Recognition of the Spatial Organization of Three-Dimensional Shapes. Proc R Soc London 200(1140):269–294 Meunie J, Benalla M (2003) Real-time color segmentation of road signs. IEEE:1823–1826 Milottaa FLM, Furnaria G, Quattrocchi C, Pasquale S, Allegra D, Gueli AM, Stanco F, Tanasi D (2020) Challenges in automatic Munsell color profiling for cultural heritage. Pattern Recognit Lett 131:135–141 Safuan SNM, Tomari R, Zakaria WNW, Othman NB (2018) White blood cell (WBC) counting analysis of blood smear images using various color segmentation strategies. Measurement 116:543-555 Ng HP, Ong SH, Goh PS, Nowinski WL (2006) Medical image segmentation using K-means clustering and improved watershed algorithm. In: IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 61–65 Nummiaro K, Koller-meier E, Van Gool L (2002) Object Tracking with an Adaptive Color-Based Particle Filter. Springer-Verlag, Heidelberg, pp 353–360 Palus H, Bereska D (2007) Region- based colour mage segmentation. In: International Conference on Machine Learning and Cybernetics, pp. 1–7 Pinho TM, Coelho JP, Oliveira J, Cunha JB (2017) Comparative analysis between LDR and HDR images for automatic fruit recognition and counting. Journal of Sensors (6):1–12 Pujol FA, Pujol M, Jimeno-Morenilla A, Pujol MJ (2017) Face detection based on skin color segmentation using fuzzy entropy. Entropy 19(26):1–22 Rahmat RF, Chairunnisa T, Gunawan D, Sitompul OS, Gunawan D, Sitompul OS (2016) Skin color segmentation using multi-color space threshold. In: International Conference On Computer And Information Sciences, pp. 391–396 Rajinikanth V, Couceiro MS (2015) RGB histogram based color image segmentation using firefly algorithm. In: Elsevier, International Conference on Information and Communication Technologies, vol. 46, pp. 1449–1457 Rajinikanth V, Raja NSM, Latha K Optimal multilevel image thresholding : an analysis with PSO and BFO algorithms. Int Eng 8:443–454 Ramaraj M, Niraimathi S (2017) Application of color based image segmentation paradigm on rgb color pixels using fuzzy c-means and k means algorithms. Int J Comput Sci Mob Comput 6(6):430–440 Raval K, Shukla R, Shah AK (2017) Color image segmentation using FCM Clustering Technique in RGB, L * a * b , HSV , YIQ Color spaces. Eur J Adv Eng Technol 4(3):194–200 Srivastava DK, Budhraja T (2016) An effective model for face detection using R, G, B color segmentation with genetic algorithm. In: Smart Innovation, Systems and Technologies 51:47–55 Su Q, Hu Z (2013) Color image quantization algorithm based on self-adaptive differential evolution. Hindawi Publ Corp Comput Intell Neurosci 2013:1–8 Sun T, Tsai S, Chan V, Overview A (2006) HSI color model based lane-marking detection. In: Proceedings of the IEEE Intelligent Transportation Systems Conference, pp. 1168–1172 Tanaka J, Weiskopf D, Williams P (2001) The role of color in high-level vision. Trends Cogn Sci. 5(5):211–215 Tremeau A, Borel N (1997) A region growing and merging algorithm to color segmentation. Pattern Recognit 30(7):1191–1203 Verma OP, Hanmandlu M, Susan S, Kulkarni M, Jain PK (2011) A Simple Single Seeded Region Growing Algorithm for Color Image Segmentation using Adaptive Thresholding. In: IEEE, International Conference on Communication Systems and Network Technologies, pp. 1–4 Wang J, Kong JUN, Lu Y, Gu W, Yin M, Xiao Y (2007) A region-based SRG algorithm for color image segmentation. In: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, pp. 19–22 Wu MN, Lin CC, Chang CC (2007) Brain tumor detection using color-based K-means clustering segmentation. In: Third international conference on intelligent information hiding and multimedia signal processing 2:245–250 Xuan L, Mingjun Z (2017) Underwater color image segmentation method via RGB channel fusion. Opt Eng 56(2):1–13 Yang C, Zhang L, Lu H, Ruan X, Yang MH (2013) Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition 3166–3173 Zhan Q, Liang Y, Xiao Y (2009) Color-based segmentation of point clouds. In: Bretar F, Pierrot-Deseilligny M, Vosselman G Laser scanning, IAPRS 38(3):248–252 Zhenqiang Y, Ge L, Sixin W (2017) TyyGuozhen, “ORGB: Offset correction in RGB color space for illumination-robust image processing. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1557–1561 Zohra F, Belahbib B, Souami F (2012) Color image segmentation by a genetic algorithm based clustering and connected component labeling. In: IEEE, International Conference on Microelectronics, no. Icm, pp. 1–4