An efficient conjugate gradient trust-region approach for systems of nonlinear equation
Tóm tắt
In this paper, we introduce a combination of family of some conjugate gradient methods (CG) with the trust-region method. Whenever the trust-region algorithm is unsuccessful, a family of CG methods is used to prevent resolving the trust-region subproblem. The computational cost for such a family is trivial. The global theory of the new approach is proved and numerical experiments are reported.
Tài liệu tham khảo
Ahookhosh, M., Amini, K.: A nonmonotone trust-region method with adaptive radius for unconstrained optimization. Comput. Math. Appl. 60, 411–422 (2010)
Ahookhosh, M., Amini, K., Peyghami, M.R.: A nonmonotone trust-region line search method for large-scale unconstrained optimization. Appl. Math. Modell. 36, 478–487 (2012)
Amini, K., Shiker Mushtak, A.K., Kimiaei, M.: A line search trust-region algorithm with nonmonotone adaptive radius for a system of nonlinear equations. 4OR-Q. J. Oper. Res. 4(2), 132–152 (2016)
Bellavia, S., Macconi, M., Morini, B.: STRSCNE: a scaled trust-region solver for constrained nonlinear equations. Comput. Optim. Appl. 28, 31–50 (2004)
Bouaricha, A., Schnabel, R.B.: Tensor methods for large sparse systems of nonlinear equations. Math. Program. 82, 377–400 (1998)
Broyden, C.G.: The convergence of an algorithm for solving sparse nonlinear systems. Math. Comput. 25(114), 285–294 (1971)
Conn, A.R., Gould, N.I.M., Toint, PhL: Trust-Region Methods. Society for Industrial and Applied Mathematics SIAM, Philadelphia (2000)
Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Esmaeili, H., Kimiaei, M.: A new adaptive trust-region method for system of nonlinear equations. Appl. Math. Model. 38(11–12), 3003–3015 (2014)
Fan, J.Y.: Convergence rate of the trust region method for nonlinear equations under local error bound condition. Comput. Optim. Appl. 34, 215–227 (2005)
Fan, J.Y.: An improved trust region algorithm for nonlinear equations. Comput. Optim. Appl. 48(1), 59–70 (2011)
Fan, J.Y., Pan, J.Y.: A modified trust region algorithm for nonlinear equations with new updating rule of trust region radius. Int. J. Comput. Math. 87(14), 3186–3195 (2010)
Fasano, G., Lampariello, F., Sciandrone, M.: A truncated nonmonotone Gauss-Newton method for large-scale nonlinear least-squares problems. Comput. Optim. Appl. 34(3), 343–358 (2006)
Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)
Grippo, L., Sciandrone, M.: Nonmonotone derivative-free methods for nonlinear equations. Comput. Optim. Appl. 37, 297–328 (2007)
Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)
Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)
Kimiaei, M., Rahpeymaii, F.: A new nonmonotone line-search trust-region approach for nonlinear systems. TOP (2019). https://doi.org/10.1007/s11750-019-00497-2
La Cruz, W., Venezuela, C., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments, Technical Report RT–04–08, July (2004)
Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13, 181–201 (2000)
Lukšan, L., Vlček, J.: Sparse and partially separable test problems for unconstrained and equality constrained optimization, Technical Report. No. 767, (1999)
Moré, J.J., Garbow, B.S., Hillström, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)
Toint, PhL: Numerical solution of large sets of algebraic nonlinear equations. Math. Comput. 46(173), 175–189 (1986)
Yuan, G., Lu, S., Wei, Z.: A new trust-region method with line search for solving symmetric nonlinear equations. Int. J. Comput. Math. 88(10), 2109–2123 (2011)
Yuan, G.L., Wei, Z.X., Lu, X.W.: A BFGS trust-region method for nonlinear equations. Computing. 92(4), 317–333 (2011)
Yuan, Y.: Trust region algorithm for nonlinear equations. Information. 1, 7–21 (1998)
Zhang, J., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58, 283–298 (2003)